Abstract

We report the results of an experimental investigation of the diffractive properties of a thick index grating embedded in a Fabry–Perot resonator, the so-called intracavity Bragg grating. We compare the performance of this device with that of a bare Bragg grating with same thickness and the same index modulation and establish the improvement in performance with the resonator. The experimental data also fit predictions calculated from a theoretical model.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. D. Nolte and K. M. Kwolek, Opt. Commun. 115, 606 (1995).
    [CrossRef]
  2. K. M. Kwolek, M. R. Melloch, and D. D. Nolte, Appl. Phys. Lett. 67, 736 (1995).
    [CrossRef]
  3. Q. Byron He, P. Yeh, and C. Gu, Opt. Lett. 17, 664 (1992).
    [CrossRef] [PubMed]
  4. Q. B. He, H. K. Liu, and P. Yeh, Appl. Phys. B 59, 467 (1994).
    [CrossRef]
  5. L. Menez, I. Zaquine, A. Maruani, and R. Frey, J. Opt. Soc. Am. B 16, 1849 (1999).
    [CrossRef]
  6. M. J. Minch and S. S. Shah, J. Chem. Educ. 54, 709 (1977).
    [CrossRef]
  7. A. P. Phillips, J. Org. Chem. 14, 302 (1949).
    [CrossRef] [PubMed]
  8. F. Gires and P. Tournois, C. R. Acad. Sci. 258, 6112 (1964).

1999 (1)

1995 (2)

D. D. Nolte and K. M. Kwolek, Opt. Commun. 115, 606 (1995).
[CrossRef]

K. M. Kwolek, M. R. Melloch, and D. D. Nolte, Appl. Phys. Lett. 67, 736 (1995).
[CrossRef]

1994 (1)

Q. B. He, H. K. Liu, and P. Yeh, Appl. Phys. B 59, 467 (1994).
[CrossRef]

1992 (1)

1977 (1)

M. J. Minch and S. S. Shah, J. Chem. Educ. 54, 709 (1977).
[CrossRef]

1964 (1)

F. Gires and P. Tournois, C. R. Acad. Sci. 258, 6112 (1964).

1949 (1)

A. P. Phillips, J. Org. Chem. 14, 302 (1949).
[CrossRef] [PubMed]

Byron He, Q.

Frey, R.

Gires, F.

F. Gires and P. Tournois, C. R. Acad. Sci. 258, 6112 (1964).

Gu, C.

He, Q. B.

Q. B. He, H. K. Liu, and P. Yeh, Appl. Phys. B 59, 467 (1994).
[CrossRef]

Kwolek, K. M.

K. M. Kwolek, M. R. Melloch, and D. D. Nolte, Appl. Phys. Lett. 67, 736 (1995).
[CrossRef]

D. D. Nolte and K. M. Kwolek, Opt. Commun. 115, 606 (1995).
[CrossRef]

Liu, H. K.

Q. B. He, H. K. Liu, and P. Yeh, Appl. Phys. B 59, 467 (1994).
[CrossRef]

Maruani, A.

Melloch, M. R.

K. M. Kwolek, M. R. Melloch, and D. D. Nolte, Appl. Phys. Lett. 67, 736 (1995).
[CrossRef]

Menez, L.

Minch, M. J.

M. J. Minch and S. S. Shah, J. Chem. Educ. 54, 709 (1977).
[CrossRef]

Nolte, D. D.

D. D. Nolte and K. M. Kwolek, Opt. Commun. 115, 606 (1995).
[CrossRef]

K. M. Kwolek, M. R. Melloch, and D. D. Nolte, Appl. Phys. Lett. 67, 736 (1995).
[CrossRef]

Phillips, A. P.

A. P. Phillips, J. Org. Chem. 14, 302 (1949).
[CrossRef] [PubMed]

Shah, S. S.

M. J. Minch and S. S. Shah, J. Chem. Educ. 54, 709 (1977).
[CrossRef]

Tournois, P.

F. Gires and P. Tournois, C. R. Acad. Sci. 258, 6112 (1964).

Yeh, P.

Q. B. He, H. K. Liu, and P. Yeh, Appl. Phys. B 59, 467 (1994).
[CrossRef]

Q. Byron He, P. Yeh, and C. Gu, Opt. Lett. 17, 664 (1992).
[CrossRef] [PubMed]

Zaquine, I.

Appl. Phys. B (1)

Q. B. He, H. K. Liu, and P. Yeh, Appl. Phys. B 59, 467 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

K. M. Kwolek, M. R. Melloch, and D. D. Nolte, Appl. Phys. Lett. 67, 736 (1995).
[CrossRef]

C. R. Acad. Sci. (1)

F. Gires and P. Tournois, C. R. Acad. Sci. 258, 6112 (1964).

J. Chem. Educ. (1)

M. J. Minch and S. S. Shah, J. Chem. Educ. 54, 709 (1977).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Org. Chem. (1)

A. P. Phillips, J. Org. Chem. 14, 302 (1949).
[CrossRef] [PubMed]

Opt. Commun. (1)

D. D. Nolte and K. M. Kwolek, Opt. Commun. 115, 606 (1995).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch of the experimental setup: The write beams are emitted by a pulsed ω-doubled Nd:YAG laser. They converge symmetrically on the Fabry–Perot cavity at external incidence θWe. The read beam (dark solid line) is emitted by a cw Ti:sapphire laser pumped by an argon laser. The beam’s external incidence angle on the device is θRe. The length of the Fabry–Perot cavity is tuned by a piezo-electric element (PEE). Avalanche detectors (ADs) detect the transmitted and reflected diffracted beams; the latter is extracted by beam splitters (S’s); references of the read and write energies are measured with p–i–n photodiodes.

Fig. 2
Fig. 2

Experimental data and numerical calculations of the diffraction efficiency, ρDR, versus the Fabry–Perot phase mismatch. The cavity length is l=730 µm, the grating period is Λ4.7 µm, and the read wavelength is λR=780 nm.

Fig. 3
Fig. 3

Experimental data and numerical calculations of the diffraction efficiency, ρDR, versus the angular detuning Δθ from Bragg resonance.

Fig. 4
Fig. 4

Experimental data and numerical calculations of the diffraction efficiency, ρDR, versus the spectral detuning Δλ from Bragg resonance.

Metrics