Abstract

The phase and amplitude profile of a shaped pulse in the visible is transferred to a pulse in the near-infrared via an optical parametric amplification (OPA) process. Complex shaped pulses, such as multiple-pulse trains and pulses with high-order phase chirp, are produced at 1.2 µm. Theoretical conditions necessary for high-fidelity parametric shape transfer are discussed. Similar schemes can be implemented for other OPA systems pumped at near-infrared wavelengths to generate high-resolution shaped pulses in the mid-infrared.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  2. J. X. Tull, M. A. Dugan, and W. S. Warren, Adv. Magn. Opt. Res. 20, 1 (1997).
    [CrossRef]
  3. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
    [CrossRef]
  4. F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, Opt. Lett. 25, 1472 (2000).
    [CrossRef]
  5. N. Belabas, J.-P. Likforman, L. Canioni, B. Bousquet, and M. Joffre, Opt. Lett. 26, 743 (2001).
    [CrossRef]
  6. T. Witte, D. Zeidler, D. Prach, K. L. Kompa, and M. Motzkus, Opt. Lett. 27, 131 (2002).
    [CrossRef]
  7. T. Wilhelm, J. Piel, and E. Riedle, Opt. Lett. 22, 1494 (1997).
    [CrossRef]
  8. G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
    [CrossRef]
  9. A. Shirakawa and T. Kobayashi, Appl. Phys. Lett. 72, 147 (1998).
    [CrossRef]
  10. H.-S. Tan, W. S. Warren, and E. Schreiber, Opt. Lett. 26, 1812 (2001).
    [CrossRef]
  11. M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, J. Opt. Soc. Am. B 18, 866 (2001).
    [CrossRef]
  12. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).
  13. M. R. Fetterman, D. Goswami, D. Keusters, W. Yang, J.-K. Rhee, and W. S. Warren, Opt. Express 3, 366 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  14. T. C. Weinacht, J. L. White, and P. H. Bucksbaum, J. Chem. Phys. B 103, 10166 (1999).
    [CrossRef]
  15. J. Hebling, Opt. Quantum Electron. 28, 1759 (1996).
    [CrossRef]
  16. A. Shirakawa, I. Sakane, and T. Kobayashi, Opt. Lett. 23, 1292 (1998).
    [CrossRef]
  17. F. Rotermund, V. Petrov, and F. Noack, Opt. Commun. 169, 183 (1999).
    [CrossRef]
  18. S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, Appl. Phys. B 70S, S247 (2000).
    [CrossRef]

2002

2001

2000

1999

F. Rotermund, V. Petrov, and F. Noack, Opt. Commun. 169, 183 (1999).
[CrossRef]

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, J. Chem. Phys. B 103, 10166 (1999).
[CrossRef]

1998

1997

T. Wilhelm, J. Piel, and E. Riedle, Opt. Lett. 22, 1494 (1997).
[CrossRef]

G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef]

J. X. Tull, M. A. Dugan, and W. S. Warren, Adv. Magn. Opt. Res. 20, 1 (1997).
[CrossRef]

1996

J. Hebling, Opt. Quantum Electron. 28, 1759 (1996).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).

Belabas, N.

Bousquet, B.

Bucksbaum, P. H.

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, J. Chem. Phys. B 103, 10166 (1999).
[CrossRef]

Canioni, L.

Cerullo, G.

G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef]

Chirkin, A. S.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).

Cussat-Blanc, S.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, Appl. Phys. B 70S, S247 (2000).
[CrossRef]

De Silvestri, S.

G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef]

Dugan, M. A.

J. X. Tull, M. A. Dugan, and W. S. Warren, Adv. Magn. Opt. Res. 20, 1 (1997).
[CrossRef]

Eickemeyer, F.

Elsaesser, T.

Fetterman, M. R.

Feurer, T.

Freysz, E.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, Appl. Phys. B 70S, S247 (2000).
[CrossRef]

Goswami, D.

Hacker, M.

Hamm, P.

Hebling, J.

J. Hebling, Opt. Quantum Electron. 28, 1759 (1996).
[CrossRef]

Ivanov, A.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, Appl. Phys. B 70S, S247 (2000).
[CrossRef]

Joffre, M.

Kaindl, R. A.

Keusters, D.

Kobayashi, T.

A. Shirakawa, I. Sakane, and T. Kobayashi, Opt. Lett. 23, 1292 (1998).
[CrossRef]

A. Shirakawa and T. Kobayashi, Appl. Phys. Lett. 72, 147 (1998).
[CrossRef]

Kompa, K. L.

Likforman, J.-P.

Lucza, T.

Lupinski, D.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, Appl. Phys. B 70S, S247 (2000).
[CrossRef]

Motzkus, M.

Nisoli, M.

G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef]

Noack, F.

F. Rotermund, V. Petrov, and F. Noack, Opt. Commun. 169, 183 (1999).
[CrossRef]

Petrov, V.

F. Rotermund, V. Petrov, and F. Noack, Opt. Commun. 169, 183 (1999).
[CrossRef]

Piel, J.

Prach, D.

Reimann, K.

Rhee, J.-K.

Riedle, E.

Rotermund, F.

F. Rotermund, V. Petrov, and F. Noack, Opt. Commun. 169, 183 (1999).
[CrossRef]

Sakane, I.

Sauerbrey, R.

Schreiber, E.

Shirakawa, A.

A. Shirakawa and T. Kobayashi, Appl. Phys. Lett. 72, 147 (1998).
[CrossRef]

A. Shirakawa, I. Sakane, and T. Kobayashi, Opt. Lett. 23, 1292 (1998).
[CrossRef]

Szabo, G.

Tan, H.-S.

Tull, J. X.

J. X. Tull, M. A. Dugan, and W. S. Warren, Adv. Magn. Opt. Res. 20, 1 (1997).
[CrossRef]

Vysloukh, V. A.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).

Warren, W. S.

Weinacht, T. C.

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, J. Chem. Phys. B 103, 10166 (1999).
[CrossRef]

Weiner, A. M.

White, J. L.

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, J. Chem. Phys. B 103, 10166 (1999).
[CrossRef]

Wilhelm, T.

Witte, T.

Woerner, M.

Wurm, M.

Yang, W.

Zeidler, D.

Adv. Magn. Opt. Res.

J. X. Tull, M. A. Dugan, and W. S. Warren, Adv. Magn. Opt. Res. 20, 1 (1997).
[CrossRef]

Appl. Phys. B

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, Appl. Phys. B 70S, S247 (2000).
[CrossRef]

Appl. Phys. Lett.

G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef]

A. Shirakawa and T. Kobayashi, Appl. Phys. Lett. 72, 147 (1998).
[CrossRef]

J. Chem. Phys. B

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, J. Chem. Phys. B 103, 10166 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

F. Rotermund, V. Petrov, and F. Noack, Opt. Commun. 169, 183 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

J. Hebling, Opt. Quantum Electron. 28, 1759 (1996).
[CrossRef]

Rev. Sci. Instrum.

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Other

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the two-stage NOPA system to produce shaped pulses in both the visible and the infrared. BSs, beam splitters; WLG, white-light generation (sapphire); SHG, second-harmonic generation (type I, BBO). D, delay. DGP, diffraction grating pair; AOPS, acousto-optic pulse shaper; 1PP and 2PP, first- and second-stage pump pulses, respectively. 1NOPA and 2NOPA, first- and second-stage noncollinear parametric amplification processes (type I, BBO), respectively; P’s, periscopes; SCC, prism-pair spatial chirp compensator.

Fig. 2
Fig. 2

(a), (b) Theoretical STRUT trace of the shaped signal and idler pulses, respectively. (c), (d) Corresponding experimental STRUT traces of the shaped signal and idler pulse, respectively. (e), (f) Spectra and the recovered group delay (G.D.) of the signal and idler pulses, respectively. Numerical fits (N.Fit) give a GVD of 5400 fs2, a 4OD of 2,080,000 fs4 for the signal pulse, a GVD of -5350 fs2, and a 4OD of -2,170,000 fs4 for the idler pulse. sfg, sum-frequency generation.

Fig. 3
Fig. 3

(a) Experimental STRUT trace of the shaped idler described in Fig. 2 after the trace is passed through 4 mm of GaP crystal to compensate for the GVD, giving a shaped pulse with only 4OD. (b) Theoretical STRUT trace for comparison.

Fig. 4
Fig. 4

(a) Experimental STRUT trace of a three-pulse train with delays of 600 and 400 fs between them. (b) Experimental and (c) theoretical spectra of the shaped idler pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Eiωi-dωEs*ωEpω+ω.
βi=-Im1αs+iβs+1αp-iβp-1.
βi-βs-βs2-αs2βp.

Metrics