Abstract

Wavelength conversion of optical signals as a result of refraction through a moving interface in traveling-wave electro-optic phase modulators has been analyzed. The connection between wavelength conversion and phase modulation with velocity mismatch has been investigated both analytically and by use of computer simulation. The configuration of a device performing the conversion is proposed, and the operating requirements are determined. Devices based on the described technique are especially promising for wavelength conversion in wavelength-division multiplexing applications and possess several advantages over competing all-optical methods.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, San Diego, Calif., 1998), pp. 160–166.
  2. B. M. Bolotovskii and S. N. Stolyarov, Soviet Phys. Uspekhi 32, 813 (1989).
    [CrossRef]
  3. R. L. Savage, R. P. Brogle, W. B. Mori, and C. Joshi, IEEE Trans. Plasma Sci. 21, 5 (1993).
    [CrossRef]
  4. H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, Appl. Phys. Lett. 78, 3136 (2001).
    [CrossRef]

2001

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, Appl. Phys. Lett. 78, 3136 (2001).
[CrossRef]

1993

R. L. Savage, R. P. Brogle, W. B. Mori, and C. Joshi, IEEE Trans. Plasma Sci. 21, 5 (1993).
[CrossRef]

1989

B. M. Bolotovskii and S. N. Stolyarov, Soviet Phys. Uspekhi 32, 813 (1989).
[CrossRef]

Bolotovskii, B. M.

B. M. Bolotovskii and S. N. Stolyarov, Soviet Phys. Uspekhi 32, 813 (1989).
[CrossRef]

Brogle, R. P.

R. L. Savage, R. P. Brogle, W. B. Mori, and C. Joshi, IEEE Trans. Plasma Sci. 21, 5 (1993).
[CrossRef]

Chang, D. H.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, Appl. Phys. Lett. 78, 3136 (2001).
[CrossRef]

Chang, Y.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, Appl. Phys. Lett. 78, 3136 (2001).
[CrossRef]

Dalton, L. R.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, Appl. Phys. Lett. 78, 3136 (2001).
[CrossRef]

Erlig, H.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, Appl. Phys. Lett. 78, 3136 (2001).
[CrossRef]

Fetterman, H. R.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, Appl. Phys. Lett. 78, 3136 (2001).
[CrossRef]

Joshi, C.

R. L. Savage, R. P. Brogle, W. B. Mori, and C. Joshi, IEEE Trans. Plasma Sci. 21, 5 (1993).
[CrossRef]

Mori, W. B.

R. L. Savage, R. P. Brogle, W. B. Mori, and C. Joshi, IEEE Trans. Plasma Sci. 21, 5 (1993).
[CrossRef]

Oh, M.-C.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, Appl. Phys. Lett. 78, 3136 (2001).
[CrossRef]

Ramaswami, R.

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, San Diego, Calif., 1998), pp. 160–166.

Savage, R. L.

R. L. Savage, R. P. Brogle, W. B. Mori, and C. Joshi, IEEE Trans. Plasma Sci. 21, 5 (1993).
[CrossRef]

Sivarajan, K. N.

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, San Diego, Calif., 1998), pp. 160–166.

Steier, W. H.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, Appl. Phys. Lett. 78, 3136 (2001).
[CrossRef]

Stolyarov, S. N.

B. M. Bolotovskii and S. N. Stolyarov, Soviet Phys. Uspekhi 32, 813 (1989).
[CrossRef]

Szep, A.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, Appl. Phys. Lett. 78, 3136 (2001).
[CrossRef]

Zhang, C.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, Appl. Phys. Lett. 78, 3136 (2001).
[CrossRef]

Zhang, H.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, Appl. Phys. Lett. 78, 3136 (2001).
[CrossRef]

Appl. Phys. Lett.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, Appl. Phys. Lett. 78, 3136 (2001).
[CrossRef]

IEEE Trans. Plasma Sci.

R. L. Savage, R. P. Brogle, W. B. Mori, and C. Joshi, IEEE Trans. Plasma Sci. 21, 5 (1993).
[CrossRef]

Soviet Phys. Uspekhi

B. M. Bolotovskii and S. N. Stolyarov, Soviet Phys. Uspekhi 32, 813 (1989).
[CrossRef]

Other

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, San Diego, Calif., 1998), pp. 160–166.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Optical and microwave inputs start traveling in the active region in phase, but since microwaves propagate faster, at the end the inputs are 180° out of phase. The shaded areas have optical refractive index no+Δno, and the areas that are not shaded have refractive index no.

Fig. 2
Fig. 2

Amplitude spectra of the original optical pulse (solid curve), the pulse frequency shifted by a microwave square wave (dotted curve), and a sinusoid (dashed curve).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

λ2=tν-tc/no=λ1no+Δnononoν-cno+Δnoν-c.
f2=f1no+Δnoν-cnoν-c,
f2=f11+Δno/no-nm.
f2=f1k=1mno+Δnom+1-k/mν-cno+Δnom-k/mν-c=f1no+Δnoν-cnoν-c.
T=Lno-nm/c.
ϕ=2πnoEL/λ0ϕ0-πV/Vπ,
Etexpjϕ0-πV/Vπ-ωt.
Etexpjϕ0-πVπΔttt+ΔtVτdτ-ωt.
Etexp-jωt+1no-nmrno32dtt+ΔtVτdτ.
Vt=V2kT<t<2k+1T-V2k-1T<t<2kT,
tt+TVτdτ=2t-4kT+TV.
Etexp-jω1+Δno/no-nmt.

Metrics