Abstract

We experimentally demonstrate that a short length of highly nonlinear holey fiber (HF) can be used for strong L+-band (1610–1640-nm) Raman amplification and ultrafast signal modulation. We use a pure silica HF with an effective area of just 2.85 µm2 at 1550 nm, which yields an effective nonlinearity 15 times higher than in conventional silica dispersion-shifted fiber. Using a 75-m length of this fiber, we obtained internal Raman gains of more than 42 dB and a noise figure of 6 dB under a forward single-pump scheme, and the Raman gain coefficient was experimentally estimated to be 7.6×10-14 m/W. Also, an 11-dB signal extinction ratio in a Raman-induced all-optical modulation experiment was achieved with the same fiber.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  2. P. Petropoulos, T. M. Monro, W. Belardi, K. Frusawa, J. H. Lee, and D. J. Richardson, Opt. Lett. 26, 1233 (2001).
    [CrossRef]
  3. E. M. Dianov, in Optical Fiber Communications Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MA1.
  4. Y. Emori and S. Namiki, in Digest of Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), postdeadline paper PD19.
  5. P. C. Reeves-Hall, D. A. Chestnut, C. J. S. De Matos, and J. R. Taylor, Electron. Lett. 37, 883 (2001).
    [CrossRef]
  6. G. Burdgel, S. Alam, A. Grudinin, I. Khrushchev, M. Durkin, M. Ibsen, and I. White, Opt. Lett. 23, 606 (1998).
    [CrossRef]
  7. P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, IEEE Photon. Technol. Lett. 10, 159 (1998).
    [CrossRef]
  8. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, Opt. Lett. 21, 1966 (1996).
    [CrossRef] [PubMed]
  9. G. P. Agrawal, in Nonlinear Fiber Optics (Academic, London, 1995), pp. 316–324.
    [CrossRef]
  10. S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, IEE Proc. J. 136, 301 (1989).
    [CrossRef]

2001 (2)

P. Petropoulos, T. M. Monro, W. Belardi, K. Frusawa, J. H. Lee, and D. J. Richardson, Opt. Lett. 26, 1233 (2001).
[CrossRef]

P. C. Reeves-Hall, D. A. Chestnut, C. J. S. De Matos, and J. R. Taylor, Electron. Lett. 37, 883 (2001).
[CrossRef]

1998 (2)

G. Burdgel, S. Alam, A. Grudinin, I. Khrushchev, M. Durkin, M. Ibsen, and I. White, Opt. Lett. 23, 606 (1998).
[CrossRef]

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, IEEE Photon. Technol. Lett. 10, 159 (1998).
[CrossRef]

1996 (2)

1989 (1)

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, IEE Proc. J. 136, 301 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, in Nonlinear Fiber Optics (Academic, London, 1995), pp. 316–324.
[CrossRef]

Ainslie, B. J.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, IEE Proc. J. 136, 301 (1989).
[CrossRef]

Alam, S.

Atkin, M.

Belardi, W.

Birks, T. A.

Boskovic, A.

Burdgel, G.

Chernikov, S. V.

Chestnut, D. A.

P. C. Reeves-Hall, D. A. Chestnut, C. J. S. De Matos, and J. R. Taylor, Electron. Lett. 37, 883 (2001).
[CrossRef]

Davey, S. T.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, IEE Proc. J. 136, 301 (1989).
[CrossRef]

De Matos, C. J. S.

P. C. Reeves-Hall, D. A. Chestnut, C. J. S. De Matos, and J. R. Taylor, Electron. Lett. 37, 883 (2001).
[CrossRef]

DeMarco, J. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, IEEE Photon. Technol. Lett. 10, 159 (1998).
[CrossRef]

Dianov, E. M.

E. M. Dianov, in Optical Fiber Communications Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MA1.

DiGiovanni, D. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, IEEE Photon. Technol. Lett. 10, 159 (1998).
[CrossRef]

Durkin, M.

Emori, Y.

Y. Emori and S. Namiki, in Digest of Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), postdeadline paper PD19.

Eskildsen, L.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, IEEE Photon. Technol. Lett. 10, 159 (1998).
[CrossRef]

Frusawa, K.

Grudinin, A.

Gruner-Nielsen, L.

Hansen, P. B.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, IEEE Photon. Technol. Lett. 10, 159 (1998).
[CrossRef]

Ibsen, M.

Judkins, J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, IEEE Photon. Technol. Lett. 10, 159 (1998).
[CrossRef]

Khrushchev, I.

Knight, J. C.

Lee, J. H.

Levring, O. A.

Monro, T. M.

Namiki, S.

Y. Emori and S. Namiki, in Digest of Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), postdeadline paper PD19.

Pedrazzani, R.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, IEEE Photon. Technol. Lett. 10, 159 (1998).
[CrossRef]

Petropoulos, P.

Reeves-Hall, P. C.

P. C. Reeves-Hall, D. A. Chestnut, C. J. S. De Matos, and J. R. Taylor, Electron. Lett. 37, 883 (2001).
[CrossRef]

Richardson, D. J.

Rothwell, W. J. M.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, IEE Proc. J. 136, 301 (1989).
[CrossRef]

Russell, P. St. J.

Stentz, A. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, IEEE Photon. Technol. Lett. 10, 159 (1998).
[CrossRef]

Strasser, T. A.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, IEEE Photon. Technol. Lett. 10, 159 (1998).
[CrossRef]

Taylor, J. R.

P. C. Reeves-Hall, D. A. Chestnut, C. J. S. De Matos, and J. R. Taylor, Electron. Lett. 37, 883 (2001).
[CrossRef]

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, Opt. Lett. 21, 1966 (1996).
[CrossRef] [PubMed]

Wakefield, B.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, IEE Proc. J. 136, 301 (1989).
[CrossRef]

White, I.

Williams, D. L.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, IEE Proc. J. 136, 301 (1989).
[CrossRef]

Electron. Lett. (1)

P. C. Reeves-Hall, D. A. Chestnut, C. J. S. De Matos, and J. R. Taylor, Electron. Lett. 37, 883 (2001).
[CrossRef]

IEE Proc. J. (1)

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, IEE Proc. J. 136, 301 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, IEEE Photon. Technol. Lett. 10, 159 (1998).
[CrossRef]

Opt. Lett. (4)

Other (3)

E. M. Dianov, in Optical Fiber Communications Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MA1.

Y. Emori and S. Namiki, in Digest of Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), postdeadline paper PD19.

G. P. Agrawal, in Nonlinear Fiber Optics (Academic, London, 1995), pp. 316–324.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scanning electron microscope image of the highly nonlinear silica HF used. The outer fiber diameter is 100 µm. Inset, central region of this HF.

Fig. 2
Fig. 2

Experimental setup for Raman amplification in the HF. EDFA1, EDFA2, erbium-doped fiber amplifiers; AOTF, acousto-optic tunable filter; WDM, wavelength-division multiplexing; PCs, polarization controllers.

Fig. 3
Fig. 3

Measured (high-gain) amplifier spectrum showing Raman amplified spontaneous emission spectrum.

Fig. 4
Fig. 4

Internal Raman gain and noise figure for various probe signal wavelengths (signal power, -10 dBm; pump peak power, 6.7 W).

Fig. 5
Fig. 5

Measured internal gain versus pump power at 1635 nm.

Fig. 6
Fig. 6

Temporal profile of dark pulses at the stimulated Raman Scattering modulator output. Inset, close up view of the square-shaped dark pulse (the temporal dip at the falling edge is due to ringing of the photoreceiver).

Metrics