Abstract

We show that a liquid-hydrogen droplet can achieve high-Q values that exceed 109 for whispering-gallery modes in the ultraviolet. We show also that pumping high-Q liquid-hydrogen droplets with ultraviolet laser radiation generates many vibrational and rotational Raman sidebands that cover a broad spectral range from the ultraviolet to the near infrared.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Chang, G. C. Chen, and M. M. Mazumder, in Quantum Optics of Confined Systems, M. Ducloy and D. Bloch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 75–99.
  2. R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  3. J. C. McLennan and J. H. McLeod, Nature 123, 160 (1929).
    [CrossRef]
  4. S. S. Bhatnagar, E. J. Allin, and H. L. Welsh, Can. J. Phys. 40, 9 (1962).
    [CrossRef]
  5. S. Uetake, M. Katsuragawa, M. Suzuki, and K. Hakuta, Phys. Rev. A 61, 0118-03(R) (1999).
    [CrossRef]
  6. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).
    [CrossRef] [PubMed]
  7. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, Opt. Lett. 23, 247 (1998).
    [CrossRef]
  8. G. Keiser, in Optical Fiber Communications (McGraw-Hill, New York, 1984).
  9. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
    [CrossRef]
  10. P. C. Souers, Hydrogen Properties for Fusion Energy (U. California Press, Berkeley, Calif., 1986), p. 70.

1999

S. Uetake, M. Katsuragawa, M. Suzuki, and K. Hakuta, Phys. Rev. A 61, 0118-03(R) (1999).
[CrossRef]

1998

1996

1989

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

1962

S. S. Bhatnagar, E. J. Allin, and H. L. Welsh, Can. J. Phys. 40, 9 (1962).
[CrossRef]

1929

J. C. McLennan and J. H. McLeod, Nature 123, 160 (1929).
[CrossRef]

Allin, E. J.

S. S. Bhatnagar, E. J. Allin, and H. L. Welsh, Can. J. Phys. 40, 9 (1962).
[CrossRef]

Bhatnagar, S. S.

S. S. Bhatnagar, E. J. Allin, and H. L. Welsh, Can. J. Phys. 40, 9 (1962).
[CrossRef]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Chang, R. K.

R. K. Chang, G. C. Chen, and M. M. Mazumder, in Quantum Optics of Confined Systems, M. Ducloy and D. Bloch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 75–99.

Chen, G. C.

R. K. Chang, G. C. Chen, and M. M. Mazumder, in Quantum Optics of Confined Systems, M. Ducloy and D. Bloch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 75–99.

Gorodetsky, M. L.

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).
[CrossRef] [PubMed]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Hakuta, K.

S. Uetake, M. Katsuragawa, M. Suzuki, and K. Hakuta, Phys. Rev. A 61, 0118-03(R) (1999).
[CrossRef]

Ilchenko, V. S.

Katsuragawa, M.

S. Uetake, M. Katsuragawa, M. Suzuki, and K. Hakuta, Phys. Rev. A 61, 0118-03(R) (1999).
[CrossRef]

Keiser, G.

G. Keiser, in Optical Fiber Communications (McGraw-Hill, New York, 1984).

Kimble, H. J.

Mabuchi, H.

Mazumder, M. M.

R. K. Chang, G. C. Chen, and M. M. Mazumder, in Quantum Optics of Confined Systems, M. Ducloy and D. Bloch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 75–99.

McLennan, J. C.

J. C. McLennan and J. H. McLeod, Nature 123, 160 (1929).
[CrossRef]

McLeod, J. H.

J. C. McLennan and J. H. McLeod, Nature 123, 160 (1929).
[CrossRef]

Savchenkov, A. A.

Souers, P. C.

P. C. Souers, Hydrogen Properties for Fusion Energy (U. California Press, Berkeley, Calif., 1986), p. 70.

Streed, E. W.

Suzuki, M.

S. Uetake, M. Katsuragawa, M. Suzuki, and K. Hakuta, Phys. Rev. A 61, 0118-03(R) (1999).
[CrossRef]

Uetake, S.

S. Uetake, M. Katsuragawa, M. Suzuki, and K. Hakuta, Phys. Rev. A 61, 0118-03(R) (1999).
[CrossRef]

Vernooy, D. W.

Welsh, H. L.

S. S. Bhatnagar, E. J. Allin, and H. L. Welsh, Can. J. Phys. 40, 9 (1962).
[CrossRef]

Can. J. Phys.

S. S. Bhatnagar, E. J. Allin, and H. L. Welsh, Can. J. Phys. 40, 9 (1962).
[CrossRef]

Nature

J. C. McLennan and J. H. McLeod, Nature 123, 160 (1929).
[CrossRef]

Opt. Lett.

Phys. Lett. A

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Phys. Rev. A

S. Uetake, M. Katsuragawa, M. Suzuki, and K. Hakuta, Phys. Rev. A 61, 0118-03(R) (1999).
[CrossRef]

Other

G. Keiser, in Optical Fiber Communications (McGraw-Hill, New York, 1984).

R. K. Chang, G. C. Chen, and M. M. Mazumder, in Quantum Optics of Confined Systems, M. Ducloy and D. Bloch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 75–99.

R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).

P. C. Souers, Hydrogen Properties for Fusion Energy (U. California Press, Berkeley, Calif., 1986), p. 70.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Energy diagram for the two SRS processes: a pure vibrational transition Q10 v=10,j=00 and a pure rotational transition S00 v=00,j=20 for the H2 molecule. The pump field is denoted p and the first Stokes fields for the Q10 and S00 transitions are denoted by v-1 and r-1, respectively. Raman shifts for the Q10 and S00 transitions are 4151.4 and 353.3 cm-1, respectively. (b) Typical photograph of a LHD hung at the edge of a quartz capillary with an outer diameter of 20 µm.

Fig. 2
Fig. 2

Temporal behavior of the first Stokes SRS component for the Q10 transition at a wavelength of 299 nm, pumped by 266-nm laser radiation. The lighter curve is the observed temporal profile. The measurement was carried out just above threshold. The temporal profiles were fitted by assumption of two WGM resonances with the same cavity lifetime. Darker curve, temporal profile fitted by setting of the cavity lifetime and the mode separation at 660 ns and 18 MHz, respectively.

Fig. 3
Fig. 3

Q values versus wavelength. Solid curve, upper limit for a LHD with a 500µm diameter. Dashed and dotted curves, upper limits for a silica sphere with a diameter of 500 µm determined by Rayleigh scattering and photoabsorption losses and by only Rayleigh scattering loss, respectively. Experimental values for LHDs are marked by filled circles; those for silica spheres (from Ref. 8), filled squares.

Fig. 4
Fig. 4

SRS spectra from a LHD pumped by UV laser radiation at 202 nm under conditions of strong pumping. Magnifications of 30× and 3×, respectively, for the v+1 and v-1 components are shown. Inset, notation for SRS assignment.

Metrics