Abstract

The Doppler bandwidth extracted from the standard deviation of the frequency shift in phase-resolved functional optical coherence tomography (F-OCT) was used to image the velocity component that is transverse to the optical probing beam. It was found that above a certain threshold level the Doppler bandwidth is a linear function of flow velocity and that the effective numerical aperture of the optical objective in the sample arm determines the slope of this dependence. The Doppler bandwidth permits accurate measurement of flow velocity without the need for precise determination of flow direction when the Doppler flow angle is within ±15° perpendicular to the probing beam. Such an approach extends the dynamic range of flow velocity measurements obtained with the phase-resolved F-OCT.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  2. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, Opt. Lett. 22, 64 (1997).
    [CrossRef] [PubMed]
  3. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, Opt. Lett. 22, 1119 (1997).
    [CrossRef] [PubMed]
  4. M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, and J. A. Izatt, Opt. Lett. 23, 1057 (1998).
    [CrossRef]
  5. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 114 (2000).
    [CrossRef]
  6. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 1358 (2000).
    [CrossRef]
  7. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, Opt. Lett. 22, 1811 (1997).
    [CrossRef]
  8. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, Opt. Express 3, 219 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]

2000 (2)

1998 (2)

1997 (3)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Bouma, B. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Chen, Z.

Dave, D.

de Boer, J. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, Opt. Lett. 22, 1811 (1997).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

Kulkarni, M. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Malekafzali, A.

Milner, T. E.

Nelson, J. S.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Rollins, A. M.

Saxer, C.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Shen, Q.

Srinivas, S.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Ung-arunyawee, R.

van Gemert, M. J. C.

van Leeuwen, T. G.

Wang, X.

Xiang, S.

Yazdanfar, S.

Zhao, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Probe-beam geometry in the sample arm of the interferometer; θ, Doppler angle.

Fig. 2
Fig. 2

Standard deviation flow profiles at the center of a glass capillary tube with an inner diameter of 900 µm. Background b for these curves is approximately 72 Hz.

Fig. 3
Fig. 3

Standard deviation NA as a function of flow velocity for two numerical apertures at a Doppler angle of 77°. Solid curves, theoretical curves calculated with Eq. (5).

Fig. 4
Fig. 4

Standard deviation NA as a function of Doppler flow angle for two values of NAeff when the flow velocity is 698 µm/s. Background b when NAeff is 0.09 or 0.05 is 65.6 or 64.8 Hz, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Bd=fa-fb=4Vλsin ϕ sin θ=4V sin θ NAeffλ,
B1/e=π/8Bd.
B1/e=4σ,
σ=πV sin θ NAeff8λ.
σ=πV sin θ NAeff8λ+b,
Vmaxfd=λ4 cos θfs.

Metrics