Abstract

We present a method of enhancing the diffraction efficiency of a hologram by placing it inside a resonant optical cavity. The diffraction efficiency improves on account of the multiple passes that the incident light undergoes inside the optical cavity. The resonance condition in this case turns out to involve both mirror reflectivity and the optical path length inside the cavity. Experimental results for a resonantly enhanced angle-multiplexed holographic memory and an optical three-port element are shown.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, D. Brady, X. G. Gu, and S. Lin, Nature 343, 325 (1990).
    [CrossRef] [PubMed]
  2. J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
    [CrossRef] [PubMed]
  3. D. Psaltis and F. Mok, Sci. Am. 273, 70 (1995).
    [CrossRef]
  4. G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).
    [CrossRef]
  5. D. Psaltis and N. Farhat, Opt. Lett. 10, 98 (1985).
    [CrossRef] [PubMed]
  6. D. Z. Anderson, Opt. Lett. 11, 56 (1986).
    [CrossRef]
  7. W. H. Steier, G. T. Kavounas, R. T. Sahara, and J. Kumar, Appl. Opt. 27, 1603 (1988).
    [CrossRef] [PubMed]
  8. S. A. Collins and H. J. Caulfield, J. Opt. Soc. Am. A 6, 1568 (1989).
    [CrossRef]
  9. D. Gabor, Nature 161, 777 (1948).
    [CrossRef]
  10. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991).
  11. D. Z. Anderson, Opt. Lett. 9, 417 (1984).
    [CrossRef] [PubMed]
  12. A. Bearden, M. P. O'Neill, L. C. Osborne, and T. L. Wong, Opt. Lett. 18, 238 (1993).
    [CrossRef]
  13. M. A. Scobey, W. J. Lekki, and T. W. Geyer, Laser Focus World 33(3), 111 (1997).
  14. F. Mok, G. W. Burr, and D. Psaltis, Opt. Lett. 21, 896 (1996).
    [CrossRef] [PubMed]
  15. The possibility of using a ring resonator was pointed out to us by D. A. B. Miller.

1999

G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).
[CrossRef]

1997

M. A. Scobey, W. J. Lekki, and T. W. Geyer, Laser Focus World 33(3), 111 (1997).

1996

1995

D. Psaltis and F. Mok, Sci. Am. 273, 70 (1995).
[CrossRef]

1994

J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

1993

1990

D. Psaltis, D. Brady, X. G. Gu, and S. Lin, Nature 343, 325 (1990).
[CrossRef] [PubMed]

1989

1988

1986

1985

1984

1948

D. Gabor, Nature 161, 777 (1948).
[CrossRef]

Anderson, D. Z.

Barbastathis, G.

G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).
[CrossRef]

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

Bearden, A.

Brady, D.

D. Psaltis, D. Brady, X. G. Gu, and S. Lin, Nature 343, 325 (1990).
[CrossRef] [PubMed]

Brady, D. J.

G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).
[CrossRef]

Burr, G. W.

Caulfield, H. J.

Collins, S. A.

Farhat, N.

Gabor, D.

D. Gabor, Nature 161, 777 (1948).
[CrossRef]

Geyer, T. W.

M. A. Scobey, W. J. Lekki, and T. W. Geyer, Laser Focus World 33(3), 111 (1997).

Gu, X. G.

D. Psaltis, D. Brady, X. G. Gu, and S. Lin, Nature 343, 325 (1990).
[CrossRef] [PubMed]

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

Kavounas, G. T.

Kumar, J.

Lekki, W. J.

M. A. Scobey, W. J. Lekki, and T. W. Geyer, Laser Focus World 33(3), 111 (1997).

Lin, S.

D. Psaltis, D. Brady, X. G. Gu, and S. Lin, Nature 343, 325 (1990).
[CrossRef] [PubMed]

Miller, D. A. B.

The possibility of using a ring resonator was pointed out to us by D. A. B. Miller.

Mok, F.

O'Neill, M. P.

Osborne, L. C.

Psaltis, D.

Sahara, R. T.

Scobey, M. A.

M. A. Scobey, W. J. Lekki, and T. W. Geyer, Laser Focus World 33(3), 111 (1997).

Steier, W. H.

Wong, T. L.

Yariv, A.

A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991).

Appl. Opt.

J. Opt. Soc. Am. A

Laser Focus World

M. A. Scobey, W. J. Lekki, and T. W. Geyer, Laser Focus World 33(3), 111 (1997).

Nature

D. Gabor, Nature 161, 777 (1948).
[CrossRef]

D. Psaltis, D. Brady, X. G. Gu, and S. Lin, Nature 343, 325 (1990).
[CrossRef] [PubMed]

Opt. Lett.

Proc. IEEE

G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).
[CrossRef]

Sci. Am.

D. Psaltis and F. Mok, Sci. Am. 273, 70 (1995).
[CrossRef]

Science

J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

Other

A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991).

The possibility of using a ring resonator was pointed out to us by D. A. B. Miller.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometries for resonant holography: (a) two-port geometry with normal incidence, (b) three-port geometry with normal incidence. VHOEs, volume holographic optical elements; PRMs, partially reflecting mirrors.

Fig. 2
Fig. 2

Holographic reconstruction: (a) nonresonant, (b) resonant. We recorded a hologram of a U.S. Air Force Resolution Chart slightly off the Fourier plane to ensure equal diffraction efficiencies for a wide bandwidth of plane-wave components. The resonant reconstruction was obtained with the configuration shown in Fig. 1(a) with r2=0.9. The measured loss coefficient was b=0.07, and the diffraction efficiencies were η1=0.3% and ηfw=1.5% (theoretical, 2.0%). This and subsequent experiments were implemented on a 1-mm-thick slab of Fe-doped LiNbO3 with a doubled Nd:YAG laser λ=532 nm.

Fig. 3
Fig. 3

Theoretical and experimental diffraction efficiencies ηfw+ηpc from Eqs. (1) and (2) that satisfy Eq. (4) versus one-pass efficiency, η1, for two partially reflecting mirror reflectivities. A measured loss coefficient of b=0.05 was used for the theoretical curves. The experimental curves were obtained with a lateral aperture of 1 mm2, where resonance was relatively uniform.

Fig. 4
Fig. 4

Holographic memory with resonant enhancement of the diffraction efficiency. The solid curve was obtained by angular scanning of the memory without the resonator. Each peak corresponds to one stored hologram. The dashed curve was obtained by application of Eqs. (1), (2), and (4) to the experimental data of the solid curve. The asterisks are actual values of the corresponding resonant diffraction efficiencies obtained experimentally.

Fig. 5
Fig. 5

Experimental and theoretical responses of the three-port element of Fig. 1(c) with r2=0.7, r2=0.9, and b=0.05.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ηfw=η11-r21+r21-η1-b2+2r1-η1-bcos4πL/λ,
ηpc=ηfw1-η1-b.
r=1-η1-b,
L=2m+1λ4,
η=η1η1+b.
r=r1-η1-b,
η=η11+rr1-r2.
ηtrans=r1-r2r1-r2.

Metrics