Abstract

Single-mode planar waveguides were fabricated from chalcogenide glass compounds with large Kerr nonlinearities. Strong self-phase modulation of subpicosecond pulses along with low linear and nonlinear absorption losses demonstrates the potential for ultrafast, low-power, all-optical processing applications.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers

Richart E. Slusher, Gadi Lenz, Juan Hodelin, Jasbinder Sanghera, L. Brandon Shaw, and Ishwar D. Aggarwal
J. Opt. Soc. Am. B 21(6) 1146-1155 (2004)

Ultrafast all-optical chalcogenide glass photonic circuits

Vahid G. Ta’eed, Neil J. Baker, Libin Fu, Klaus Finsterbusch, Michael R.E. Lamont, David J. Moss, Hong C. Nguyen, Benjamin J. Eggleton, Duk Yong Choi, Steven Madden, and Barry Luther-Davies
Opt. Express 15(15) 9205-9221 (2007)

Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths

Christopher C. Evans, Katia Shtyrkova, Jonathan D. B. Bradley, Orad Reshef, Erich Ippen, and Eric Mazur
Opt. Express 21(15) 18582-18591 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription