Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Beyond the absorption-limited nonlinear phase shift with microring resonators

Not Accessible

Your library or personal account may give you access

Abstract

We show that the nonlinear phase shift produced by a ring resonator constructed from a given nonlinear optical material can be greater than the phase shift produced by a single pass through an infinite length of the same material when linear and nonlinear absorption are taken into consideration. The figure of merit (defined by the phase shift times the throughput) also improves for the ring resonator over that of the native nonlinear absorbing material. We finally show that these benefits of using the ring resonator as a nonlinear phase-shifting element can enhance the switching characteristics of a Mach–Zehnder interferometer.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Nonlinear phase shift of cascaded microring resonators

Yan Chen and Steve Blair
J. Opt. Soc. Am. B 20(10) 2125-2132 (2003)

Wavelength conversion in GaAs micro-ring resonators

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho
Opt. Lett. 25(8) 554-556 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved