Abstract

We describe a method for analyzing short-pulse laser propagation through tissues for the detection of tumors and inhomogeneities in tissues with the goal of developing a time-resolved optical tomography system. Traditional methods for analyzing photon transport in tissues usually involve the parabolic or diffusion approximation, which implies infinite speed of propagation of the optical signal. To overcome such limitations we calculate the transmitted and reflected intensity distributions, using the damped-wave hyperbolic P1 and the discrete-ordinates methods, for a wide range of laser, tissue, and tumor parameters. The results are compared with the parabolic diffusion P1 approximation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamada, Ann. Rev. Fluid Mech. 6, 1 (1995).
  2. A. Yodh and B. Chance, Phys. Today 48(3), 34 (1995).
    [CrossRef]
  3. C. Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, and O. Svanberg, Proc. SPIE 2626, 149 (1995).
    [CrossRef]
  4. S. L. Jacques, Appl. Opt. 28, 2223 (1989).
    [CrossRef] [PubMed]
  5. J. C. Hebden, S. R. Arridge, and D. T. Delpy, Phys. Med. Biol. 42, 825 (1997).
    [CrossRef] [PubMed]
  6. M. S. Patterson, B. Chance, and B. C. Wilson, Appl. Opt. 28, 2331 (1989).
    [CrossRef] [PubMed]
  7. K. M. Yoo, F. Liu, and R. R. Alfano, Phys. Rev. Lett. 65, 2647 (1990).
    [CrossRef]
  8. D. R. Kirby and D. T. Delpy, Phys. Med. Biol. 42, 1203 (1997).
    [CrossRef]
  9. A. H. Gandbakche, R. Nossal, and R. F. Bonner, Appl. Opt. 32, 504 (1993).
    [CrossRef]
  10. S. Kumar and K. Mitra, in Microscale Aspects of Thermal Radiation Transport and Laser Applications, J. P. Harnett, T. F. Irvine, Jr., Y. I. Cho, and G. Greene, eds., Vol. 33 of Advances in Heat Transfer (Academic, San Diego, Calif., 1999), pp. 187–294.
  11. M. F. Modest, Radiative Heat Transfer (McGraw-Hill, New York, 1993).
  12. S. Kumar, K. Mitra, and Y. Yamada, Appl. Opt. 35, 3372 (1996).
    [CrossRef] [PubMed]
  13. J. J. Duderstadt and L. J. Hamilton, Nuclear Reacter Analysis (Academic, New York, 1976).
  14. J. C. Hebden and D. T. Delpy, Opt. Lett. 19, 311 (1994).
    [CrossRef] [PubMed]
  15. M. Sakami, K. Mitra, and P. Hsu, Proc. ASME 366–1, 135 (2000).

2000

M. Sakami, K. Mitra, and P. Hsu, Proc. ASME 366–1, 135 (2000).

1997

D. R. Kirby and D. T. Delpy, Phys. Med. Biol. 42, 1203 (1997).
[CrossRef]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, Phys. Med. Biol. 42, 825 (1997).
[CrossRef] [PubMed]

1996

1995

Y. Yamada, Ann. Rev. Fluid Mech. 6, 1 (1995).

A. Yodh and B. Chance, Phys. Today 48(3), 34 (1995).
[CrossRef]

C. Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, and O. Svanberg, Proc. SPIE 2626, 149 (1995).
[CrossRef]

1994

1993

1990

K. M. Yoo, F. Liu, and R. R. Alfano, Phys. Rev. Lett. 65, 2647 (1990).
[CrossRef]

1989

Alfano, R. R.

K. M. Yoo, F. Liu, and R. R. Alfano, Phys. Rev. Lett. 65, 2647 (1990).
[CrossRef]

Andersson-Engels, S.

C. Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, and O. Svanberg, Proc. SPIE 2626, 149 (1995).
[CrossRef]

Arridge, S. R.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, Phys. Med. Biol. 42, 825 (1997).
[CrossRef] [PubMed]

Berg, R.

C. Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, and O. Svanberg, Proc. SPIE 2626, 149 (1995).
[CrossRef]

Bonner, R. F.

Chance, B.

Delpy, D. T.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, Phys. Med. Biol. 42, 825 (1997).
[CrossRef] [PubMed]

D. R. Kirby and D. T. Delpy, Phys. Med. Biol. 42, 1203 (1997).
[CrossRef]

J. C. Hebden and D. T. Delpy, Opt. Lett. 19, 311 (1994).
[CrossRef] [PubMed]

Duderstadt, J. J.

J. J. Duderstadt and L. J. Hamilton, Nuclear Reacter Analysis (Academic, New York, 1976).

Gandbakche, A. H.

Hamilton, L. J.

J. J. Duderstadt and L. J. Hamilton, Nuclear Reacter Analysis (Academic, New York, 1976).

Hebden, J. C.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, Phys. Med. Biol. 42, 825 (1997).
[CrossRef] [PubMed]

J. C. Hebden and D. T. Delpy, Opt. Lett. 19, 311 (1994).
[CrossRef] [PubMed]

Hsu, P.

M. Sakami, K. Mitra, and P. Hsu, Proc. ASME 366–1, 135 (2000).

Jacques, S. L.

Kirby, D. R.

D. R. Kirby and D. T. Delpy, Phys. Med. Biol. 42, 1203 (1997).
[CrossRef]

Klinteberg, C.

C. Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, and O. Svanberg, Proc. SPIE 2626, 149 (1995).
[CrossRef]

Kumar, S.

S. Kumar, K. Mitra, and Y. Yamada, Appl. Opt. 35, 3372 (1996).
[CrossRef] [PubMed]

S. Kumar and K. Mitra, in Microscale Aspects of Thermal Radiation Transport and Laser Applications, J. P. Harnett, T. F. Irvine, Jr., Y. I. Cho, and G. Greene, eds., Vol. 33 of Advances in Heat Transfer (Academic, San Diego, Calif., 1999), pp. 187–294.

Lindquist, C.

C. Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, and O. Svanberg, Proc. SPIE 2626, 149 (1995).
[CrossRef]

Liu, F.

K. M. Yoo, F. Liu, and R. R. Alfano, Phys. Rev. Lett. 65, 2647 (1990).
[CrossRef]

Mitra, K.

M. Sakami, K. Mitra, and P. Hsu, Proc. ASME 366–1, 135 (2000).

S. Kumar, K. Mitra, and Y. Yamada, Appl. Opt. 35, 3372 (1996).
[CrossRef] [PubMed]

S. Kumar and K. Mitra, in Microscale Aspects of Thermal Radiation Transport and Laser Applications, J. P. Harnett, T. F. Irvine, Jr., Y. I. Cho, and G. Greene, eds., Vol. 33 of Advances in Heat Transfer (Academic, San Diego, Calif., 1999), pp. 187–294.

Modest, M. F.

M. F. Modest, Radiative Heat Transfer (McGraw-Hill, New York, 1993).

Nossal, R.

Patterson, M. S.

Sakami, M.

M. Sakami, K. Mitra, and P. Hsu, Proc. ASME 366–1, 135 (2000).

Svanberg, O.

C. Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, and O. Svanberg, Proc. SPIE 2626, 149 (1995).
[CrossRef]

Wilson, B. C.

Yamada, Y.

Yodh, A.

A. Yodh and B. Chance, Phys. Today 48(3), 34 (1995).
[CrossRef]

Yoo, K. M.

K. M. Yoo, F. Liu, and R. R. Alfano, Phys. Rev. Lett. 65, 2647 (1990).
[CrossRef]

Advances in Heat Transfer

S. Kumar and K. Mitra, in Microscale Aspects of Thermal Radiation Transport and Laser Applications, J. P. Harnett, T. F. Irvine, Jr., Y. I. Cho, and G. Greene, eds., Vol. 33 of Advances in Heat Transfer (Academic, San Diego, Calif., 1999), pp. 187–294.

Ann. Rev. Fluid Mech.

Y. Yamada, Ann. Rev. Fluid Mech. 6, 1 (1995).

Appl. Opt.

Opt. Lett.

Phys. Med. Biol.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, Phys. Med. Biol. 42, 825 (1997).
[CrossRef] [PubMed]

D. R. Kirby and D. T. Delpy, Phys. Med. Biol. 42, 1203 (1997).
[CrossRef]

Phys. Rev. Lett.

K. M. Yoo, F. Liu, and R. R. Alfano, Phys. Rev. Lett. 65, 2647 (1990).
[CrossRef]

Phys. Today

A. Yodh and B. Chance, Phys. Today 48(3), 34 (1995).
[CrossRef]

Proc. ASME

M. Sakami, K. Mitra, and P. Hsu, Proc. ASME 366–1, 135 (2000).

Proc. SPIE

C. Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, and O. Svanberg, Proc. SPIE 2626, 149 (1995).
[CrossRef]

Other

M. F. Modest, Radiative Heat Transfer (McGraw-Hill, New York, 1993).

J. J. Duderstadt and L. J. Hamilton, Nuclear Reacter Analysis (Academic, New York, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Signal reflected from a tissue medium for the three models of tissue-analysis methods discussed here.

Fig. 2
Fig. 2

Signal transmitted through a tissue medium for various phase-function distributions.

Fig. 3
Fig. 3

Signal reflected from a multilayered medium for several inhomogeneity locations.

Fig. 4
Fig. 4

Signal reflected from a multilayered medium for several laser pulse widths.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1cIx,μ,tt+μIx,μ,tx=-σeIx,μ,t+σs2-11Ix,μ,tpμμdμ+Sx,μ,t,
pΘ=m=0MamPmcos Θ,
Icx,μ,t=I0 exp-σexHt-x/c-Ht-tp-x/cδμ-1,
Sx,μ,t=σs4π-11Icx,μ,tpμμdμ.
3c22ut2-2ux2+3cσa+σe-σsgut+3σe-σsgσau=σe-σsg32-11Sdμ-32-11Sxμdμ+32-111cStdμ,
1cut-131-gσs+σa2ux2+σau=14π4πSdΩ.
1cIix,tt+μiIix,tt=-σeIix,t+σS2j=-KKwjIjx,tpμjμi+Sx,μi,t,i,j0,

Metrics