Abstract

The techniques of confocal microscopy and optical tweezers have shown themselves to be powerful tools in biological and medical research. We combine these methods to develop a minimally invasive instrument that is capable of making hydrodynamic measurements more rapidly than is possible with other devices. This result leads to the possibility of making scanning images of the viscosity distribution of materials around biopolymer-producing cells. 100×100 images can be taken with 0.5µm spatial resolution in 3 min. An image of the viscosity distribution around a pullulan-producing cell of Aureobasidium pullulans is shown as an example.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Pralle, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Appl. Phys. A 66, S71 (1998).
    [CrossRef]
  2. A. Meller, R. Bar-Ziv, T. Tlusty, E. Moses, J. Stavans, and S. A. Safran, Biophys. J. 74, 1541 (1998).
    [CrossRef] [PubMed]
  3. M. T. Valentine, L. E. Dewalt, and H. D. OuYang, J. Phys. Condens. Matter 8, 9477 (1996).
    [CrossRef]
  4. B. Nemet and M. Cronin-Golumb are preparing a manuscript to be called “Measuring microscopic viscosity with optical tweezers as a confocal probe.”
  5. Some axial offset is required because the probe microsphere is not trapped at exactly the focal point of the laser in the sample.
  6. M. Doi, Introduction to Polymer Physics (Oxford U. Press, Oxford, England, 1996).
  7. Y. Shabtai and I. Mukmenev, Appl. Microbiol. Biotechnol.43, 595 (1995).
    [CrossRef]
  8. L. Malmqvist and H. M. Hertz, Opt. Lett. 19, 853 (1994).
    [CrossRef] [PubMed]
  9. M. E. J. Friese, A. G. Truscott, H. Rubinsztein-Dunlop, and N. R. Heckenberg, Appl. Opt. 38, 6597 (1999).
    [CrossRef]
  10. T. G. Mason and D. A. Weitz, Phys. Rev. Lett. 74, 7 (1995).
    [CrossRef]

1999 (1)

1998 (2)

A. Pralle, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Appl. Phys. A 66, S71 (1998).
[CrossRef]

A. Meller, R. Bar-Ziv, T. Tlusty, E. Moses, J. Stavans, and S. A. Safran, Biophys. J. 74, 1541 (1998).
[CrossRef] [PubMed]

1996 (1)

M. T. Valentine, L. E. Dewalt, and H. D. OuYang, J. Phys. Condens. Matter 8, 9477 (1996).
[CrossRef]

1995 (1)

T. G. Mason and D. A. Weitz, Phys. Rev. Lett. 74, 7 (1995).
[CrossRef]

1994 (1)

Bar-Ziv, R.

A. Meller, R. Bar-Ziv, T. Tlusty, E. Moses, J. Stavans, and S. A. Safran, Biophys. J. 74, 1541 (1998).
[CrossRef] [PubMed]

Cronin-Golumb, M.

B. Nemet and M. Cronin-Golumb are preparing a manuscript to be called “Measuring microscopic viscosity with optical tweezers as a confocal probe.”

Dewalt, L. E.

M. T. Valentine, L. E. Dewalt, and H. D. OuYang, J. Phys. Condens. Matter 8, 9477 (1996).
[CrossRef]

Doi, M.

M. Doi, Introduction to Polymer Physics (Oxford U. Press, Oxford, England, 1996).

Florin, E. L.

A. Pralle, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Appl. Phys. A 66, S71 (1998).
[CrossRef]

Friese, M. E. J.

Heckenberg, N. R.

Hertz, H. M.

Horber, J. K. H.

A. Pralle, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Appl. Phys. A 66, S71 (1998).
[CrossRef]

Malmqvist, L.

Mason, T. G.

T. G. Mason and D. A. Weitz, Phys. Rev. Lett. 74, 7 (1995).
[CrossRef]

Meller, A.

A. Meller, R. Bar-Ziv, T. Tlusty, E. Moses, J. Stavans, and S. A. Safran, Biophys. J. 74, 1541 (1998).
[CrossRef] [PubMed]

Moses, E.

A. Meller, R. Bar-Ziv, T. Tlusty, E. Moses, J. Stavans, and S. A. Safran, Biophys. J. 74, 1541 (1998).
[CrossRef] [PubMed]

Mukmenev, I.

Y. Shabtai and I. Mukmenev, Appl. Microbiol. Biotechnol.43, 595 (1995).
[CrossRef]

Nemet, B.

B. Nemet and M. Cronin-Golumb are preparing a manuscript to be called “Measuring microscopic viscosity with optical tweezers as a confocal probe.”

OuYang, H. D.

M. T. Valentine, L. E. Dewalt, and H. D. OuYang, J. Phys. Condens. Matter 8, 9477 (1996).
[CrossRef]

Pralle, A.

A. Pralle, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Appl. Phys. A 66, S71 (1998).
[CrossRef]

Rubinsztein-Dunlop, H.

Safran, S. A.

A. Meller, R. Bar-Ziv, T. Tlusty, E. Moses, J. Stavans, and S. A. Safran, Biophys. J. 74, 1541 (1998).
[CrossRef] [PubMed]

Shabtai, Y.

Y. Shabtai and I. Mukmenev, Appl. Microbiol. Biotechnol.43, 595 (1995).
[CrossRef]

Stavans, J.

A. Meller, R. Bar-Ziv, T. Tlusty, E. Moses, J. Stavans, and S. A. Safran, Biophys. J. 74, 1541 (1998).
[CrossRef] [PubMed]

Stelzer, E. H. K.

A. Pralle, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Appl. Phys. A 66, S71 (1998).
[CrossRef]

Tlusty, T.

A. Meller, R. Bar-Ziv, T. Tlusty, E. Moses, J. Stavans, and S. A. Safran, Biophys. J. 74, 1541 (1998).
[CrossRef] [PubMed]

Truscott, A. G.

Valentine, M. T.

M. T. Valentine, L. E. Dewalt, and H. D. OuYang, J. Phys. Condens. Matter 8, 9477 (1996).
[CrossRef]

Weitz, D. A.

T. G. Mason and D. A. Weitz, Phys. Rev. Lett. 74, 7 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

A. Pralle, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Appl. Phys. A 66, S71 (1998).
[CrossRef]

Biophys. J. (1)

A. Meller, R. Bar-Ziv, T. Tlusty, E. Moses, J. Stavans, and S. A. Safran, Biophys. J. 74, 1541 (1998).
[CrossRef] [PubMed]

J. Phys. Condens. Matter (1)

M. T. Valentine, L. E. Dewalt, and H. D. OuYang, J. Phys. Condens. Matter 8, 9477 (1996).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

T. G. Mason and D. A. Weitz, Phys. Rev. Lett. 74, 7 (1995).
[CrossRef]

Other (4)

B. Nemet and M. Cronin-Golumb are preparing a manuscript to be called “Measuring microscopic viscosity with optical tweezers as a confocal probe.”

Some axial offset is required because the probe microsphere is not trapped at exactly the focal point of the laser in the sample.

M. Doi, Introduction to Polymer Physics (Oxford U. Press, Oxford, England, 1996).

Y. Shabtai and I. Mukmenev, Appl. Microbiol. Biotechnol.43, 595 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental layout. The pinhole (P) is placed near an image plane of the object, permitting confocal detection. This set of conjugate planes is indicated by #’s. An acousto-optic deflector (AOD) is placed in an image plane of the back aperture of the objective lens (OL). This other set of conjugate planes is indicated by *’s. Two orthogonal galvanometer scanning mirrors (SM) are placed in an intermediate image plane *. A lock-in amplifier (SR850, Stanford Research Systems) drives the acousto-optic deflector with a sinusoidal waveform and measures the amplitude and phase of the avalanche photodiode (APD) signal at the second-harmonic frequency. The scene is viewed with a CCD camera in transmission through the dichroic mirror (DM), which has high reflectivity in the IR. BS, beam splitter.

Fig. 2
Fig. 2

Experimentally measured second-harmonic phase and amplitude for a 1.9µm-diameter silica microsphere in an aqueous solution of glycerol of 24.1% wt. η=2ηwater. The power of the laser was constant at 46.3 mW at 815-nm wavelength. From the linear regression to the phase data, we get τ=1.990±0.006 ms and a correlation coefficient of 0.9995. The solid curves were calculated from the theoretical functional dependence by use of the fitted τ; for the phase, the fitting function is 2 cot-1ωτ, and for the amplitude it is a constant multiplied by 1+ωτ-2-1.

Fig. 3
Fig. 3

Image of the viscosity gradient near a pullulan producing an A. pullulans blastospore (values are relative to the viscosity of water). The cell is shown in the middle of the image. The 1.9µm-diameter silica bead that was used for the measurement can be seen in the upper left-hand corner of the map being held by the laser tweezers (there are a few other silica beads scattered around that were not part of the measurement). The bead was moved in steps of 0.53 µm, and measurements were taken at each point to give a 16×16 image. The frequency of the trap’s oscillation was 300 Hz, and the laser power was 19 mW at the sample.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γdxdt+κx-pt=Lt,
φ2=2 cot-1 ωτ,
SNR=γΔγ=18akBT/κωτ21+ωτ21Δωτ,

Metrics