Abstract

We propose a novel noniterative near-infrared diffusive image reconstruction method that uses minimal a priori co-registered ultrasound information. Small absorbing targets embedded in a homogeneous background are described approximately in terms of their monopole, dipole, and quadrupole moments. With an approximate estimation of the center locations of these absorbers from ultrasound images, we show in simulations that the reconstruction accuracy of the absorption coefficient exceeds 80% if the noise level is less than 0.2%. We also demonstrate experimentally that the accuracy can be improved by use of additional ultrasound volume information even for a noise level as high as 1.5%.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, Neoplasia 2, 26 (2000).
    [CrossRef] [PubMed]
  2. R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, Photochem Photobiol. 67, 33 (1998).
    [CrossRef] [PubMed]
  3. B. Pogue and K. Paulsen, Opt. Lett. 23, 1716 (1998).
    [CrossRef]
  4. Q. Zhu, N. G. Chen, D. Q. Piao, P. Y. Guo, and X. H. Ding, Appl. Opt. 40, 3288 (2001).
    [CrossRef]
  5. N. G. Chen, P. Y. Guo, S. K. Yan, D. Q. Piao, and Q. Zhu, Appl. Opt. 40, 6367 (2001).
    [CrossRef]

2001 (2)

2000 (1)

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, Neoplasia 2, 26 (2000).
[CrossRef] [PubMed]

1998 (2)

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, Photochem Photobiol. 67, 33 (1998).
[CrossRef] [PubMed]

B. Pogue and K. Paulsen, Opt. Lett. 23, 1716 (1998).
[CrossRef]

Butler, J.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, Neoplasia 2, 26 (2000).
[CrossRef] [PubMed]

Cerussi, A.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, Neoplasia 2, 26 (2000).
[CrossRef] [PubMed]

Chen, N. G.

Danen, R. M.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, Photochem Photobiol. 67, 33 (1998).
[CrossRef] [PubMed]

Ding, X. H.

Espinoza, J.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, Neoplasia 2, 26 (2000).
[CrossRef] [PubMed]

Guo, P. Y.

Lanning, R.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, Neoplasia 2, 26 (2000).
[CrossRef] [PubMed]

Li, X. D.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, Photochem Photobiol. 67, 33 (1998).
[CrossRef] [PubMed]

Paulsen, K.

Pham, T.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, Neoplasia 2, 26 (2000).
[CrossRef] [PubMed]

Piao, D. Q.

Pogue, B.

Shah, N.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, Neoplasia 2, 26 (2000).
[CrossRef] [PubMed]

Svaasand, L.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, Neoplasia 2, 26 (2000).
[CrossRef] [PubMed]

Thayer, W. S.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, Photochem Photobiol. 67, 33 (1998).
[CrossRef] [PubMed]

Tromberg, B.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, Neoplasia 2, 26 (2000).
[CrossRef] [PubMed]

Wang, Y.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, Photochem Photobiol. 67, 33 (1998).
[CrossRef] [PubMed]

Yan, S. K.

Yodh, A. G.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, Photochem Photobiol. 67, 33 (1998).
[CrossRef] [PubMed]

Zhu, Q.

Appl. Opt. (2)

Neoplasia (1)

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, Neoplasia 2, 26 (2000).
[CrossRef] [PubMed]

Opt. Lett. (1)

Photochem Photobiol. (1)

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, Photochem Photobiol. 67, 33 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Bottom view of the combined probe. The central rectangular slot gives the ultrasound array access to tissues underneath the probe. The circular holes are used to hold optical fibers. The small holes are for light sources, and the larger ones are for detectors. The diameter of the probe is 10 cm. (b) Side view of the probe.

Fig. 2
Fig. 2

Simulation results for a single target. (a), (c), and (e) mean values of monopole, dipole, and quadrupole moments, respectively. (b), (d), and (f) standard deviations of the corresponding quantities. The solid lines in (a), (c), and (e) are true values.

Tables (1)

Tables Icon

Table 1 Reconstructed Absorption Coefficients from Phantom Experimentsa

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

μar=μa0+Δμar.
Φω,r=Φincω,r+Φsctω,r.
Φsctω,r-VΔμarDΦincω,rGr,rd3r.
Φsctω,r=-1Dν=1NMνWr0ν+Dν·Wr0ν+Qν·Wr0ν/2+Oa3.
Mν=VνΔμard3r,  Dν=VνΔμarrd3r,  Qν=VνΔμarrrd3r.
ϕˆ1ϕˆmTΩM1  D1  Q1    QNT.

Metrics