Abstract

In optical coherence tomography, axial and lateral resolutions are determined by the source coherence length and the numerical aperture of the sampling lens, respectively. Whereas axial resolution can be improved by use of a broadband light source, there is a trade-off between lateral resolution and focusing depth when conventional optical elements are used. We report on the incorporation of an axicon lens into the sample arm of an interferometer to overcome this limitation. Using an axicon lens with a top angle of 160°, we maintained 10µm or better lateral resolution over a focusing depth of at least 6 mm. In addition to having high lateral resolution, the focusing spot has an intensity that is approximately constant over a greater depth range than when a conventional lens is used.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  2. Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, IEEE J. Sel. Top. Quantum Electron. 5, 1134 (1999).
    [CrossRef]
  3. W. Drexler, U. Morgner, F. X. Körtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 24, 1221 (1999).
    [CrossRef]
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, Opt. Lett. 26, 608 (2001).
    [CrossRef]
  5. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, Opt. Lett. 22, 64 (1997).
    [CrossRef] [PubMed]
  6. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, Opt. Lett. 21, 543 (1996).
    [CrossRef] [PubMed]
  7. A. M. Rollins, R. U. Arunyawee, A. Chak, C. K. Wong, K. Kobayashi, M. V. Sivak, and J. A. Izatt, Opt. Lett. 24, 1358 (1999).
    [CrossRef]
  8. J. H. McLeod, J. Opt. Soc. Am. 44, 592 (1954).
  9. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 114 (2000).
    [CrossRef]
  10. A. T. Friberg and S. Y. Popov, Appl. Opt. 35, 3039 (1996).
    [CrossRef] [PubMed]
  11. R. M. Herman and T. A. Wiggins, J. Opt. Soc. Am. A 8, 932 (1991).
    [CrossRef]

2001 (1)

2000 (1)

1999 (3)

1997 (1)

1996 (2)

1991 (2)

R. M. Herman and T. A. Wiggins, J. Opt. Soc. Am. A 8, 932 (1991).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

1954 (1)

Arunyawee, R. U.

Boppart, S. A.

Bouma, B. E.

Brezinski, M. E.

Chak, A.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Chen, Z.

Chudoba, C.

Dave, D.

de Boer, J. F.

Drexler, W.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Friberg, A. T.

Frostig, R. D.

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, IEEE J. Sel. Top. Quantum Electron. 5, 1134 (1999).
[CrossRef]

Fujimoto, J. G.

Ghanta, R. K.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Hartl, I.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Herman, R. M.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Izatt, J. A.

Ko, T. H.

Kobayashi, K.

Körtner, F. X.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

McLeod, J. H.

Milner, T. E.

Morgner, U.

Nelson, J. S.

Pitris, C.

Popov, S. Y.

Prakash, N.

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, IEEE J. Sel. Top. Quantum Electron. 5, 1134 (1999).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Ranka, J. K.

Rollins, A. M.

Saxer, C.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Sivak, M. V.

Southern, J. F.

Srinivas, S. M.

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, IEEE J. Sel. Top. Quantum Electron. 5, 1134 (1999).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Weissman, N. J.

Wiggins, T. A.

Windeler, R. S.

Wong, C. K.

Xiang, S.

Zhao, Y.

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 114 (2000).
[CrossRef]

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, IEEE J. Sel. Top. Quantum Electron. 5, 1134 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the sample arm of the OCT system with an axicon lens to achieve simultaneous high lateral resolution and greater depth of focus: α, angle formed by the conical surface with the flat surface of the axicon lens; β, intersection angle of the geometrical rays with the optical axis; Rz, radius of the incident beam; D, waist of the incident beam; L, depth of focus.

Fig. 2
Fig. 2

Signal versus axial position in the sample arm of the interferometer.

Fig. 3
Fig. 3

OCT images and their cross-sectional profiles normal to the bar direction (noise floor, -6 dB). Images are successive from top to bottom and show a target located at different axial positions relative to the axicon apex at intervals of 1.2 mm over a total observed depth of 6 mm.

Fig. 4
Fig. 4

OCT images of a capillary tube with polystyrene microspheres and their profiles along the center of the tube in depth directions that correspond to different focusing conditions in the sample arm: A, A axicon lens; B, B; conventional lens focusing at the top of the tube; C, C, conventional lens focusing at the center of the tube.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ir,z=E2RzRz2πk sin βcos2 βJ02kr sin β,  RD/2,  zL,
Rz=z tan β1-tan α tan β,
L=Dtan-1 β-tan α2,
n sin α=sinα+β,
J0kρ0 sin β=0,
ρ0=2.4048λ/2π sin β.

Metrics