Abstract

We exploited Nd3+ laser emission at 1061.9 nm (F43/2I411/2 channel) in a self-χ2 active GdAl3BO34:Nd3+ laser crystal. UV radiation was obtained from a 1.8% yield from self-sum-frequency mixing:  1/pump +1/1061.9=1/UV, during pumping in the Nd3+4G5/2G27/2 levels near 588 nm. The UV tunability had a range of 378–382 nm. We have demonstrated, for the first time to our knowledge, generation of coherent IR radiation from a self-difference-frequency mixing laser: 1/pump -1/1061.9=1/IR. We got a 0.5% yield and tunability in the 1305–1365-nm range.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Geiger, H. Hemmati, W. H. Farr, and N. S. Prasad, Opt. Lett. 21, 201 (1996).
    [CrossRef] [PubMed]
  2. L. F. Johnson and A. A. Ballman, J. Appl. Phys. 40, 297 (1969).
    [CrossRef]
  3. D. Jaque, J. Capmany, and J. Garcia Solé, Appl. Phys. Lett. 73, 3659 (1998).
    [CrossRef]
  4. A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, Opt. Mater. 13, 311 (1999).
    [CrossRef]
  5. F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, Opt. Mater. 13, 293 (1999).
    [CrossRef]
  6. X. Chen, Z. Luo, and Y. Huang, J. Opt. Soc. Am. B 18, 646 (2001).
    [CrossRef]
  7. A. Brenier, J. Lumin. 91, 121 (2000).
    [CrossRef]
  8. L. Tian, J. Wang, J. Wei, H. Pan, Q. Guan, X. Hu, Y. Liu, C. Q. Wang, and Y. T. Chow, Chin. Sci. Bull. 43, 1973 (1998).
    [CrossRef]
  9. C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, J. Cryst. Growth 208, 487 (2000).
    [CrossRef]
  10. A. Brenier, C. Tu, M. Qiu, A. Jiang, B. Wu, and J. Li, J. Opt. Soc. Am. B 18, 1104 (2001).
    [CrossRef]

2001

2000

A. Brenier, J. Lumin. 91, 121 (2000).
[CrossRef]

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, J. Cryst. Growth 208, 487 (2000).
[CrossRef]

1999

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, Opt. Mater. 13, 311 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, Opt. Mater. 13, 293 (1999).
[CrossRef]

1998

D. Jaque, J. Capmany, and J. Garcia Solé, Appl. Phys. Lett. 73, 3659 (1998).
[CrossRef]

L. Tian, J. Wang, J. Wei, H. Pan, Q. Guan, X. Hu, Y. Liu, C. Q. Wang, and Y. T. Chow, Chin. Sci. Bull. 43, 1973 (1998).
[CrossRef]

1996

1969

L. F. Johnson and A. A. Ballman, J. Appl. Phys. 40, 297 (1969).
[CrossRef]

Aka, G.

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, Opt. Mater. 13, 293 (1999).
[CrossRef]

Ballman, A. A.

L. F. Johnson and A. A. Ballman, J. Appl. Phys. 40, 297 (1969).
[CrossRef]

Boulon, G.

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, Opt. Mater. 13, 311 (1999).
[CrossRef]

Brenier, A.

A. Brenier, C. Tu, M. Qiu, A. Jiang, B. Wu, and J. Li, J. Opt. Soc. Am. B 18, 1104 (2001).
[CrossRef]

A. Brenier, J. Lumin. 91, 121 (2000).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, Opt. Mater. 13, 311 (1999).
[CrossRef]

Capmany, J.

D. Jaque, J. Capmany, and J. Garcia Solé, Appl. Phys. Lett. 73, 3659 (1998).
[CrossRef]

Chen, X.

X. Chen, Z. Luo, and Y. Huang, J. Opt. Soc. Am. B 18, 646 (2001).
[CrossRef]

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, J. Cryst. Growth 208, 487 (2000).
[CrossRef]

Chow, Y. T.

L. Tian, J. Wang, J. Wei, H. Pan, Q. Guan, X. Hu, Y. Liu, C. Q. Wang, and Y. T. Chow, Chin. Sci. Bull. 43, 1973 (1998).
[CrossRef]

Farr, W. H.

Garcia Solé, J.

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, Opt. Mater. 13, 311 (1999).
[CrossRef]

D. Jaque, J. Capmany, and J. Garcia Solé, Appl. Phys. Lett. 73, 3659 (1998).
[CrossRef]

Geiger, A. R.

Guan, Q.

L. Tian, J. Wang, J. Wei, H. Pan, Q. Guan, X. Hu, Y. Liu, C. Q. Wang, and Y. T. Chow, Chin. Sci. Bull. 43, 1973 (1998).
[CrossRef]

Hemmati, H.

Hu, X.

L. Tian, J. Wang, J. Wei, H. Pan, Q. Guan, X. Hu, Y. Liu, C. Q. Wang, and Y. T. Chow, Chin. Sci. Bull. 43, 1973 (1998).
[CrossRef]

Huang, Y.

X. Chen, Z. Luo, and Y. Huang, J. Opt. Soc. Am. B 18, 646 (2001).
[CrossRef]

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, J. Cryst. Growth 208, 487 (2000).
[CrossRef]

Jaque, D.

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, Opt. Mater. 13, 311 (1999).
[CrossRef]

D. Jaque, J. Capmany, and J. Garcia Solé, Appl. Phys. Lett. 73, 3659 (1998).
[CrossRef]

Jiang, A.

A. Brenier, C. Tu, M. Qiu, A. Jiang, B. Wu, and J. Li, J. Opt. Soc. Am. B 18, 1104 (2001).
[CrossRef]

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, J. Cryst. Growth 208, 487 (2000).
[CrossRef]

Johnson, L. F.

L. F. Johnson and A. A. Ballman, J. Appl. Phys. 40, 297 (1969).
[CrossRef]

Kahn-Harari, A.

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, Opt. Mater. 13, 293 (1999).
[CrossRef]

Li, J.

Liu, Y.

L. Tian, J. Wang, J. Wei, H. Pan, Q. Guan, X. Hu, Y. Liu, C. Q. Wang, and Y. T. Chow, Chin. Sci. Bull. 43, 1973 (1998).
[CrossRef]

Luo, Z.

X. Chen, Z. Luo, and Y. Huang, J. Opt. Soc. Am. B 18, 646 (2001).
[CrossRef]

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, J. Cryst. Growth 208, 487 (2000).
[CrossRef]

Mougel, F.

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, Opt. Mater. 13, 293 (1999).
[CrossRef]

Pan, H.

L. Tian, J. Wang, J. Wei, H. Pan, Q. Guan, X. Hu, Y. Liu, C. Q. Wang, and Y. T. Chow, Chin. Sci. Bull. 43, 1973 (1998).
[CrossRef]

Prasad, N. S.

Qiu, M.

A. Brenier, C. Tu, M. Qiu, A. Jiang, B. Wu, and J. Li, J. Opt. Soc. Am. B 18, 1104 (2001).
[CrossRef]

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, J. Cryst. Growth 208, 487 (2000).
[CrossRef]

Tian, L.

L. Tian, J. Wang, J. Wei, H. Pan, Q. Guan, X. Hu, Y. Liu, C. Q. Wang, and Y. T. Chow, Chin. Sci. Bull. 43, 1973 (1998).
[CrossRef]

Tu, C.

A. Brenier, C. Tu, M. Qiu, A. Jiang, B. Wu, and J. Li, J. Opt. Soc. Am. B 18, 1104 (2001).
[CrossRef]

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, J. Cryst. Growth 208, 487 (2000).
[CrossRef]

Vivien, D.

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, Opt. Mater. 13, 293 (1999).
[CrossRef]

Wang, C. Q.

L. Tian, J. Wang, J. Wei, H. Pan, Q. Guan, X. Hu, Y. Liu, C. Q. Wang, and Y. T. Chow, Chin. Sci. Bull. 43, 1973 (1998).
[CrossRef]

Wang, J.

L. Tian, J. Wang, J. Wei, H. Pan, Q. Guan, X. Hu, Y. Liu, C. Q. Wang, and Y. T. Chow, Chin. Sci. Bull. 43, 1973 (1998).
[CrossRef]

Wei, J.

L. Tian, J. Wang, J. Wei, H. Pan, Q. Guan, X. Hu, Y. Liu, C. Q. Wang, and Y. T. Chow, Chin. Sci. Bull. 43, 1973 (1998).
[CrossRef]

Wu, B.

Appl. Phys. Lett.

D. Jaque, J. Capmany, and J. Garcia Solé, Appl. Phys. Lett. 73, 3659 (1998).
[CrossRef]

Chin. Sci. Bull.

L. Tian, J. Wang, J. Wei, H. Pan, Q. Guan, X. Hu, Y. Liu, C. Q. Wang, and Y. T. Chow, Chin. Sci. Bull. 43, 1973 (1998).
[CrossRef]

J. Appl. Phys.

L. F. Johnson and A. A. Ballman, J. Appl. Phys. 40, 297 (1969).
[CrossRef]

J. Cryst. Growth

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, J. Cryst. Growth 208, 487 (2000).
[CrossRef]

J. Lumin.

A. Brenier, J. Lumin. 91, 121 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Opt. Mater.

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, Opt. Mater. 13, 311 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, Opt. Mater. 13, 293 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Overview of the devices based on a self-χ2 active laser crystal.

Fig. 2
Fig. 2

Absorption cross section of NGAB corresponding to the I49/2G45/2G27/2 Nd3+ transition for o and e polarization in the direction of propagation, θ=27.3°.

Fig. 3
Fig. 3

Phase matching required in NGAB by self-sum- and difference-frequency mixing of the pump wave (I49/2G45/2G27/2 Nd3+ transition) and the Nd3+ laser wave corresponding to the F43/2I411/2 channel.

Fig. 4
Fig. 4

UV tuning range obtained from self-sum-frequency mixing of the pump wave (I49/2G45/2G27/2 Nd3+ transition) and the Nd3+ laser wave corresponding to the F43/2I411/2 channel.

Fig. 5
Fig. 5

Time evolution of the pulses.

Fig. 6
Fig. 6

Ratio of UV power obtained from self-sum-frequency mixing to pump power.

Fig. 7
Fig. 7

IR tuning range obtained from self-difference-frequency mixing of the pump wave (I49/2G45/2G27/2 Nd3+ transition) and the Nd3+ laser wave corresponding to the F43/2I411/2 channel for two different orientations of the NGAB crystal.

Fig. 8
Fig. 8

Ratio of IR power obtained from self-difference-frequency mixing to pump power for two radii of curvature, (Rc) of the output mirror.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ω1n1θ,φ+ω2n2θ,φ=ω3n3θ,φ,
1/pump +1/1061.9=1/UV.
1/pump -1/1061.9=1/IR,
σθ,φ=σXσYσZσY2σZ2eX2+σX2σZ2eY2+σX2σY2eZ21/2,

Metrics