Abstract

An amplitude–phase-conversion self-referencing technique for intensity-modulated photonic sensors that uses two different-wavelength fiber Bragg gratings is presented. With this technique, the system response has been demonstrated to be almost unafffected by network power variations as high as 90% of the total power launched by the source. We prove the multiplexing capability of this type of self-referenced fiber sensor by wavelength-division multiplexing two of them in a star network. A tunable fused biconical wavelength-division multiplexer is used for sensor addressing at the detection block, providing both good isolation and low cross-talk values.

© 2002 Optical Society of America

Full Article  |  PDF Article

Errata

Vasilis Ntziachristos, Jorge Ripoll, and Ralph Weissleder, "Would near-infrared fluorescence signals propagate through large human organs for clinical studies?–Errata," Opt. Lett. 27, 1652-1652 (2002)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-27-18-1652

References

  • View by:
  • |
  • |
  • |

  1. G. Adamovsky and D. J. Maitland, Proc. SPIE 954, 647 (1989).
    [CrossRef]
  2. G. Murtaza and J. M. Senior, Opt. Commun. 120, 348 (1995).
    [CrossRef]
  3. R. I. MacDonald and R. Nychka, Electron. Lett. 27, 2194 (1991).
    [CrossRef]
  4. J. M. Baptista, J. L. Santos, and A. S. Lage, Opt. Commun. 181, 287 (2000).
    [CrossRef]
  5. P. Sixt, G. Kotrotsios, L. Falco, and O. Parriaux, J. Lightwave Technol. 4, 926 (1986).
    [CrossRef]
  6. C. J. Misas, F. M. Araujo, L. A. Ferreira, J. L. Santos, and J. M. Lopez-Higuera, J. Sel. Topics Quantum Electron. 6, 750 (2000).
    [CrossRef]

2000

J. M. Baptista, J. L. Santos, and A. S. Lage, Opt. Commun. 181, 287 (2000).
[CrossRef]

C. J. Misas, F. M. Araujo, L. A. Ferreira, J. L. Santos, and J. M. Lopez-Higuera, J. Sel. Topics Quantum Electron. 6, 750 (2000).
[CrossRef]

1995

G. Murtaza and J. M. Senior, Opt. Commun. 120, 348 (1995).
[CrossRef]

1991

R. I. MacDonald and R. Nychka, Electron. Lett. 27, 2194 (1991).
[CrossRef]

1989

G. Adamovsky and D. J. Maitland, Proc. SPIE 954, 647 (1989).
[CrossRef]

1986

P. Sixt, G. Kotrotsios, L. Falco, and O. Parriaux, J. Lightwave Technol. 4, 926 (1986).
[CrossRef]

Adamovsky, G.

G. Adamovsky and D. J. Maitland, Proc. SPIE 954, 647 (1989).
[CrossRef]

Araujo, F. M.

C. J. Misas, F. M. Araujo, L. A. Ferreira, J. L. Santos, and J. M. Lopez-Higuera, J. Sel. Topics Quantum Electron. 6, 750 (2000).
[CrossRef]

Baptista, J. M.

J. M. Baptista, J. L. Santos, and A. S. Lage, Opt. Commun. 181, 287 (2000).
[CrossRef]

Falco, L.

P. Sixt, G. Kotrotsios, L. Falco, and O. Parriaux, J. Lightwave Technol. 4, 926 (1986).
[CrossRef]

Ferreira, L. A.

C. J. Misas, F. M. Araujo, L. A. Ferreira, J. L. Santos, and J. M. Lopez-Higuera, J. Sel. Topics Quantum Electron. 6, 750 (2000).
[CrossRef]

Kotrotsios, G.

P. Sixt, G. Kotrotsios, L. Falco, and O. Parriaux, J. Lightwave Technol. 4, 926 (1986).
[CrossRef]

Lage, A. S.

J. M. Baptista, J. L. Santos, and A. S. Lage, Opt. Commun. 181, 287 (2000).
[CrossRef]

Lopez-Higuera, J. M.

C. J. Misas, F. M. Araujo, L. A. Ferreira, J. L. Santos, and J. M. Lopez-Higuera, J. Sel. Topics Quantum Electron. 6, 750 (2000).
[CrossRef]

MacDonald, R. I.

R. I. MacDonald and R. Nychka, Electron. Lett. 27, 2194 (1991).
[CrossRef]

Maitland, D. J.

G. Adamovsky and D. J. Maitland, Proc. SPIE 954, 647 (1989).
[CrossRef]

Misas, C. J.

C. J. Misas, F. M. Araujo, L. A. Ferreira, J. L. Santos, and J. M. Lopez-Higuera, J. Sel. Topics Quantum Electron. 6, 750 (2000).
[CrossRef]

Murtaza, G.

G. Murtaza and J. M. Senior, Opt. Commun. 120, 348 (1995).
[CrossRef]

Nychka, R.

R. I. MacDonald and R. Nychka, Electron. Lett. 27, 2194 (1991).
[CrossRef]

Parriaux, O.

P. Sixt, G. Kotrotsios, L. Falco, and O. Parriaux, J. Lightwave Technol. 4, 926 (1986).
[CrossRef]

Santos, J. L.

C. J. Misas, F. M. Araujo, L. A. Ferreira, J. L. Santos, and J. M. Lopez-Higuera, J. Sel. Topics Quantum Electron. 6, 750 (2000).
[CrossRef]

J. M. Baptista, J. L. Santos, and A. S. Lage, Opt. Commun. 181, 287 (2000).
[CrossRef]

Senior, J. M.

G. Murtaza and J. M. Senior, Opt. Commun. 120, 348 (1995).
[CrossRef]

Sixt, P.

P. Sixt, G. Kotrotsios, L. Falco, and O. Parriaux, J. Lightwave Technol. 4, 926 (1986).
[CrossRef]

Electron. Lett.

R. I. MacDonald and R. Nychka, Electron. Lett. 27, 2194 (1991).
[CrossRef]

J. Lightwave Technol.

P. Sixt, G. Kotrotsios, L. Falco, and O. Parriaux, J. Lightwave Technol. 4, 926 (1986).
[CrossRef]

J. Sel. Topics Quantum Electron.

C. J. Misas, F. M. Araujo, L. A. Ferreira, J. L. Santos, and J. M. Lopez-Higuera, J. Sel. Topics Quantum Electron. 6, 750 (2000).
[CrossRef]

Opt. Commun.

J. M. Baptista, J. L. Santos, and A. S. Lage, Opt. Commun. 181, 287 (2000).
[CrossRef]

G. Murtaza and J. M. Senior, Opt. Commun. 120, 348 (1995).
[CrossRef]

Proc. SPIE

G. Adamovsky and D. J. Maitland, Proc. SPIE 954, 647 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: BBS, broadband source; EOM, electro-optical modulator; VA, variable attenuator; C1, coupler; T-WDM, tunable wavelength-division multiplexer; D, detector; f, modulation frequency; L, fiber length. Inset, loss-displacement function for the intensity sensors (reflection).

Fig. 2
Fig. 2

System response for different modulation frequencies. The values of ϕdif, calculated considering a 300-m fiber length and n=1.45, are indicated in parentheses.

Fig. 3
Fig. 3

Output sensitivity to network losses for different signal values.

Fig. 4
Fig. 4

Network cross talk (from sensor 2 to sensor 1; the theoretical curve corresponds to no cross talk in the network).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Pr=Por1+mr sin2πft+ϕr,
Pout=Pr+Ps=Por+Pos+Po sin2πft+ϕ,
Po=Pormr2+Posms2+2PorPosmrms cosϕdif1/2,
ϕ=arctanPormr sin ϕr+Posms sin ϕsPormr cos ϕr+Posms cos ϕs=arctansin ϕr+βms/mrsin ϕscos ϕr+βms/mrcos ϕs.
ϕ= arctanms/mrβ+cosϕdifsinϕdif-arctancosϕssinϕs.
ϕβ=ms/mrsinϕdif1+β2ms/mr2+2βms/mrcosϕdif.
ϕmeasured= arctanβ+cosϕdifsinϕdif-arctanβmax+cosϕdifsinϕdif.

Metrics