Abstract

We have developed a high-resolution programmable adaptive-optic device based on an optically addressed liquid-crystal electro-optic valve controlled by an achromatic three-wave lateral shearing interferometer. We apply this phase-only filter and loop to shape the far-field pattern of laser beams. As a first application, we theoretically compute and experimentally verify the focus along a line longer than tens of Rayleigh ranges.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Chanteloup, H. Baldis, A. Migus, G. Mourou, B. Loiseaux, and J. P. Huignard, Opt. Lett. 23, 475 (1998).
    [CrossRef]
  2. P. Aubourg, J.-P. Huignard, M. Hareng, and R. A. Mullen, Appl. Opt. 21, 3706 (1982).
    [CrossRef] [PubMed]
  3. J. Primot, Appl. Opt. 32, 6242 (1993).
    [CrossRef] [PubMed]
  4. A. Modena, Nature 377, 606 (1995).
    [CrossRef]
  5. B. Wattellier, J. C. Chanteloup, J. Fuchs, C. Sauteret, J. P. Zou, and A. Migus, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 70–71.
  6. Z. Bor, Opt. Lett. 14, 119 (1989).
    [CrossRef] [PubMed]
  7. J. C. Chanteloup, E. Salmon, C. Sauteret, A. Migus, P. Zeitoun, A. Klisnick, A. Carillon, S. Hubert, D. Ros, P. Nickles, and M. Kalachnikov, J. Opt. Soc. Am. B 17, 151 (2000).
    [CrossRef]
  8. R. W. Gerchberg and W. O. Saxton, Optik (Stuttgart) 35, 237 (1972).

2000 (1)

1998 (1)

1995 (1)

A. Modena, Nature 377, 606 (1995).
[CrossRef]

1993 (1)

1989 (1)

1982 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, Optik (Stuttgart) 35, 237 (1972).

Aubourg, P.

Baldis, H.

Bor, Z.

Carillon, A.

Chanteloup, J. C.

J. C. Chanteloup, E. Salmon, C. Sauteret, A. Migus, P. Zeitoun, A. Klisnick, A. Carillon, S. Hubert, D. Ros, P. Nickles, and M. Kalachnikov, J. Opt. Soc. Am. B 17, 151 (2000).
[CrossRef]

J. C. Chanteloup, H. Baldis, A. Migus, G. Mourou, B. Loiseaux, and J. P. Huignard, Opt. Lett. 23, 475 (1998).
[CrossRef]

B. Wattellier, J. C. Chanteloup, J. Fuchs, C. Sauteret, J. P. Zou, and A. Migus, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 70–71.

Fuchs, J.

B. Wattellier, J. C. Chanteloup, J. Fuchs, C. Sauteret, J. P. Zou, and A. Migus, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 70–71.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, Optik (Stuttgart) 35, 237 (1972).

Hareng, M.

Hubert, S.

Huignard, J. P.

Huignard, J.-P.

Kalachnikov, M.

Klisnick, A.

Loiseaux, B.

Migus, A.

J. C. Chanteloup, E. Salmon, C. Sauteret, A. Migus, P. Zeitoun, A. Klisnick, A. Carillon, S. Hubert, D. Ros, P. Nickles, and M. Kalachnikov, J. Opt. Soc. Am. B 17, 151 (2000).
[CrossRef]

J. C. Chanteloup, H. Baldis, A. Migus, G. Mourou, B. Loiseaux, and J. P. Huignard, Opt. Lett. 23, 475 (1998).
[CrossRef]

B. Wattellier, J. C. Chanteloup, J. Fuchs, C. Sauteret, J. P. Zou, and A. Migus, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 70–71.

Modena, A.

A. Modena, Nature 377, 606 (1995).
[CrossRef]

Mourou, G.

Mullen, R. A.

Nickles, P.

Primot, J.

Ros, D.

Salmon, E.

Sauteret, C.

J. C. Chanteloup, E. Salmon, C. Sauteret, A. Migus, P. Zeitoun, A. Klisnick, A. Carillon, S. Hubert, D. Ros, P. Nickles, and M. Kalachnikov, J. Opt. Soc. Am. B 17, 151 (2000).
[CrossRef]

B. Wattellier, J. C. Chanteloup, J. Fuchs, C. Sauteret, J. P. Zou, and A. Migus, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 70–71.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, Optik (Stuttgart) 35, 237 (1972).

Wattellier, B.

B. Wattellier, J. C. Chanteloup, J. Fuchs, C. Sauteret, J. P. Zou, and A. Migus, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 70–71.

Zeitoun, P.

Zou, J. P.

B. Wattellier, J. C. Chanteloup, J. Fuchs, C. Sauteret, J. P. Zou, and A. Migus, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 70–71.

Appl. Opt. (2)

J. Opt. Soc. Am. B (1)

Nature (1)

A. Modena, Nature 377, 606 (1995).
[CrossRef]

Opt. Lett. (2)

Optik (Stuttgart) (1)

R. W. Gerchberg and W. O. Saxton, Optik (Stuttgart) 35, 237 (1972).

Other (1)

B. Wattellier, J. C. Chanteloup, J. Fuchs, C. Sauteret, J. P. Zou, and A. Migus, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 70–71.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for beam shaping. The liquid-crystal optically addressed spatial light modulator modifies the spatial phase that can be monitored by the achromatic three-wave lateral shearing interferometer (ATWLSI). The far-field pattern is imaged by a 10× microscope objective and recorded by a CCD camera. 2D, two-dimensional.

Fig. 2
Fig. 2

Arbitrary phase-profile convergence. (a) We let the wave front coverage to n=2,m=4 Zernike polynomial. (b) Measured wave front at the end of the loop. (c) Normalized error. The rms of the error is λ/76.

Fig. 3
Fig. 3

Ray-tracing notation. A ray issuing from point M at radial coordinate r will intersect the optical axis at zr, located between f1 and f2, the extreme focus positions.

Fig. 4
Fig. 4

Fresnel-diffraction-simulated focal region of the beam, focused with a phase plate designed to create a focal line. The line gets thinner and thinner at its end and is less than 50% of the diffraction limit for the same aperture in the near field.

Fig. 5
Fig. 5

Intensity along the optical axis, extracted from Fig. 4. The increase in intensity is sharp at the beginning and the end of the curve.

Fig. 6
Fig. 6

Focal-spot regions of a beam modulated by a hologram producing a line of 6.3 cm. (a) Fresnel diffraction simulation. (b) Experiment: The intensity damping is due to the fact that the experimental beam was Gaussian.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

zr=f1+f2-f1r/R2,
φr=-2πλR22f2-f1 ln1+f2-f1f1rR2.
fopt=f1+f22.
vzc=1ctz-11-f12f2-f1Rz2.

Metrics