Abstract

A new phenomenon of pulse trapping by the ultrashort soliton pulse of an optical fiber has been experimentally observed. The trapped pulse in the normal-dispersion region copropagates with the soliton pulse in the anomalous-dispersion region along the fiber, and the wavelength of the trapped pulse is shifted to satisfy the condition of group-velocity matching. The wavelengths of the soliton pulse and the trapped pulse change almost continuously as the power of the soliton pulse is varied. Almost perfect conversion efficiencies are observed for soliton self-frequency shift and pulse trapping.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).
  2. M. N. Islam, C. D. Poole, and J. P. Gordon, Opt. Lett. 14, 1011 (1989).
    [CrossRef] [PubMed]
  3. B. Zysset, P. Beaud, and W. Hodel, Appl. Phys. Lett. 50, 1027 (1987).
    [CrossRef]
  4. N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
    [CrossRef]
  5. F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659 (1986).
    [CrossRef] [PubMed]
  6. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
    [CrossRef]
  7. N. Nishizawa, R. Okamura, and T. Goto, Jpn. J. Appl. Phys. 39, L409 (2000).
    [CrossRef]

2000 (1)

N. Nishizawa, R. Okamura, and T. Goto, Jpn. J. Appl. Phys. 39, L409 (2000).
[CrossRef]

1999 (2)

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
[CrossRef]

1989 (1)

1987 (1)

B. Zysset, P. Beaud, and W. Hodel, Appl. Phys. Lett. 50, 1027 (1987).
[CrossRef]

1986 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

Beaud, P.

B. Zysset, P. Beaud, and W. Hodel, Appl. Phys. Lett. 50, 1027 (1987).
[CrossRef]

Gordon, J. P.

Goto, T.

N. Nishizawa, R. Okamura, and T. Goto, Jpn. J. Appl. Phys. 39, L409 (2000).
[CrossRef]

N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
[CrossRef]

Hodel, W.

B. Zysset, P. Beaud, and W. Hodel, Appl. Phys. Lett. 50, 1027 (1987).
[CrossRef]

Ishikawa, S.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

Islam, M. N.

Kashiwada, T.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

Mitschke, F. M.

Mollenauer, L. F.

Nishimura, M.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

Nishizawa, N.

N. Nishizawa, R. Okamura, and T. Goto, Jpn. J. Appl. Phys. 39, L409 (2000).
[CrossRef]

N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
[CrossRef]

Okamura, R.

N. Nishizawa, R. Okamura, and T. Goto, Jpn. J. Appl. Phys. 39, L409 (2000).
[CrossRef]

Okuno, T.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

Onishi, M.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

Poole, C. D.

Zysset, B.

B. Zysset, P. Beaud, and W. Hodel, Appl. Phys. Lett. 50, 1027 (1987).
[CrossRef]

Appl. Phys. Lett. (1)

B. Zysset, P. Beaud, and W. Hodel, Appl. Phys. Lett. 50, 1027 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Nishizawa, R. Okamura, and T. Goto, Jpn. J. Appl. Phys. 39, L409 (2000).
[CrossRef]

Opt. Lett. (2)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for pulse trapping: LPF, low-pass filter; HPF, high-pass filter; PMF, polarization-maintaining fiber.

Fig. 2
Fig. 2

Observed optical spectra at (a) the input and (b) the output of PM-HN-DSF2 when pulse trapping occurs. The spectral intensity of the signal pulse is enlarged for convenience. Dotted curves, measured delay times that are due to chromatic dispersion in PM-HN-DSF2.

Fig. 3
Fig. 3

Observed temporal waveforms of output pulses from PM-HN-DSF2 when the initial temporal separation Δt between the soliton pulse and the signal pulse is (a) 4 ps, (b) 0.5 ps, and (c) -0.5 ps. Solid and broken curves, observed waveforms of the signal pulse and the soliton pulse, respectively. The wavelength of the soliton pulse is 1650 nm and that of the signal pulse is 1410 nm at the input of PM-HN-DSF2.

Fig. 4
Fig. 4

Characteristics of the trapping efficiencies of the signal pulse by the soliton pulse. The wavelength of the signal pulse is 1410 nm, and those of the soliton pulse are set to be 1650, 1675, and 1700 nm at fiber input.

Fig. 5
Fig. 5

Characteristics of the wavelength shift of the output pulses at the output of PM-HN-DSF2 as the input power of soliton pulse is changed. The wavelength of the signal pulse is 1404 nm and that of the soliton pulse is 1670 nm at the input of PM-HN-DSF2.

Metrics