Abstract

Wave-front sensing from artificial beacons is normally performed by formation of a focused spot in the atmosphere and sensing of the wave-front distortions produced during the beam’s return passage. We propose an alternative method that senses the distortions produced during the outgoing path by forming an intensity pattern in the atmosphere that is then viewed from the ground. A key advantage of this method is that a parallel beam is used, and therefore the wave-front measurements will not suffer from the effects of focal anisoplanatism. We also envisage other geometries, all based on the concept of projecting a pupil pattern onto the atmosphere.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., N. Ageorges and J. C. Dainty, eds., Laser Guide Star Adaptive Optics for Astronomy (Kluwer Academic, Dordrecht, The Netherlands, 2000).
    [CrossRef]
  2. Y. Baharav, E. N. Ribak, and J. Shamir, Opt. Lett. 19, 242 (1994).
    [CrossRef] [PubMed]
  3. Y. Baharav, E. N. Ribak, and J. Shamir, J. Opt. Soc. Am. A 13, 1083 (1996).
    [CrossRef]
  4. E. N. Ribak and R. Ragazzoni, in Conference on Beyond Conventional Adaptive Optics (European Southern Observatory, Garching, Germany, to be published).
  5. M. Lloyd-Hart, S. M. Jefferies, J. R. P. Angel, and E. K. Hege, Opt. Lett. 26, 402 (2001).
    [CrossRef]
  6. J. R. P. Angel, “Dynamic refocus for Rayleigh beacons,” presented at the Conference on Beyond Conventional Adaptive Optics, Venice, Italy, May 7–10, 2001.
  7. F. Roddier, Appl. Opt. 27, 1223 (1998).
    [CrossRef]
  8. T. E. Gureyev and K. A. Nugent, J. Opt. Soc. Am. A 13, 1670 (1996).
    [CrossRef]
  9. P. M. Blanchard, D. J. Fisher, S. C. Woods, and A. H. Greenaway, Appl. Opt. 39, 6649 (2000).
    [CrossRef]
  10. C. Roddier and F. Roddier, Appl. Opt. 26, 1668 (1987).
    [CrossRef] [PubMed]
  11. E. N. Ribak, E. Gershnik, and M. Cheselka, Opt. Lett. 21, 435 (1996).
    [CrossRef] [PubMed]

2001 (1)

2000 (1)

1998 (1)

1996 (3)

1994 (1)

1987 (1)

Angel, J. R. P.

M. Lloyd-Hart, S. M. Jefferies, J. R. P. Angel, and E. K. Hege, Opt. Lett. 26, 402 (2001).
[CrossRef]

J. R. P. Angel, “Dynamic refocus for Rayleigh beacons,” presented at the Conference on Beyond Conventional Adaptive Optics, Venice, Italy, May 7–10, 2001.

Baharav, Y.

Blanchard, P. M.

Cheselka, M.

Fisher, D. J.

Gershnik, E.

Greenaway, A. H.

Gureyev, T. E.

Hege, E. K.

Jefferies, S. M.

Lloyd-Hart, M.

Nugent, K. A.

Ragazzoni, R.

E. N. Ribak and R. Ragazzoni, in Conference on Beyond Conventional Adaptive Optics (European Southern Observatory, Garching, Germany, to be published).

Ribak, E. N.

Roddier, C.

Roddier, F.

Shamir, J.

Woods, S. C.

Appl. Opt. (3)

J. Opt. Soc. Am. A (2)

Opt. Lett. (3)

Other (3)

J. R. P. Angel, “Dynamic refocus for Rayleigh beacons,” presented at the Conference on Beyond Conventional Adaptive Optics, Venice, Italy, May 7–10, 2001.

See, e.g., N. Ageorges and J. C. Dainty, eds., Laser Guide Star Adaptive Optics for Astronomy (Kluwer Academic, Dordrecht, The Netherlands, 2000).
[CrossRef]

E. N. Ribak and R. Ragazzoni, in Conference on Beyond Conventional Adaptive Optics (European Southern Observatory, Garching, Germany, to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic diagram of the laser launch system. A parallel beam is propagated into the atmosphere and is subsequently imaged at two heights, h1 and h2, by the camera.

Fig. 2
Fig. 2

Schematic arrangement to produce a point-diffraction interferometric PPPP, using (a) a single reference beam and (b) multiple reference beams. The configuration shown in (b) has a reduced cone effect compared with the configuration in (a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

e116EDh2τhLΔh,
116EDh2τhΔhnL.

Metrics