Abstract

We have fabricated W/B4C multilayers having periods in the range d=0.81.2 nm and measured their soft-x-ray performance near normal incidence in the wavelength range 1.4<λ<2.4 nm. By adjusting the fractional layer thickness of W we have produced structures having interface widths σ0.29 nm (i.e., as determined from normal-incidence reflectometry), thus having optimal soft-x-ray performance. We describe our results and discuss their implications, particularly with regard to the development of short-wavelength normal-incidence x-ray optics.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Stearns, J. Appl. Phys. 65, 491 (1989).
    [CrossRef]
  2. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), pp. 281–282.
  3. A. F. Jankowski, L. R. Schrawyer, and M. A. Wall, J. Appl. Phys. 68, 5162 (1990).
    [CrossRef]
  4. J. F. Seely, G. Gutman, and J. Wood, Appl. Opt. 32, 3541 (1993).
    [CrossRef] [PubMed]
  5. G. Gutman, J. X-Ray Sci. Technol. 4, 142 (1994).
  6. C. C. Walton, “Ultra-short-period W/B4C multilayers for x-ray optics—microstructure limits on reflectivity,” Ph.D. dissertation University of California, Berkeley, Berkeley, Calif., (1997).
  7. D. L. Windt and W. K. Waskiewicz, J. Vac. Sci. Technol. B 12, 3826 (1994).
    [CrossRef]
  8. D. L. Windt, Computers Phys. 12, 360 (1998).
    [CrossRef]
  9. The validity of relating interface width parameter s (used in the modified Fresnel formalism to describe the x-ray reflectance data) to a precise physical description of the interface remains to be determined comprehensively, particularly when s is comparable to the layer thickness. Nevertheless, even in multilayers that locally have large interface widths or discontinuous layers, we find s to be a useful parameter with which to quantify the interface width and to compare multilayers and multilayer systems.
  10. J. H. Underwood, E. M. Gullikson, M. Koike, P. J. Batson, P. E. Denham, K. D. Franck, R. E. Tackaberry, and W. F. Steele, Rev. Sci. Instrum. 67, 3372 (1996).
    [CrossRef]
  11. F. Eriksson, G. A. Johansson, H. M. Hertz, and J. Birch, Proc. SPIE 4506, 14 (2001).

2001

F. Eriksson, G. A. Johansson, H. M. Hertz, and J. Birch, Proc. SPIE 4506, 14 (2001).

1998

D. L. Windt, Computers Phys. 12, 360 (1998).
[CrossRef]

1996

J. H. Underwood, E. M. Gullikson, M. Koike, P. J. Batson, P. E. Denham, K. D. Franck, R. E. Tackaberry, and W. F. Steele, Rev. Sci. Instrum. 67, 3372 (1996).
[CrossRef]

1994

G. Gutman, J. X-Ray Sci. Technol. 4, 142 (1994).

D. L. Windt and W. K. Waskiewicz, J. Vac. Sci. Technol. B 12, 3826 (1994).
[CrossRef]

1993

1990

A. F. Jankowski, L. R. Schrawyer, and M. A. Wall, J. Appl. Phys. 68, 5162 (1990).
[CrossRef]

1989

D. G. Stearns, J. Appl. Phys. 65, 491 (1989).
[CrossRef]

Batson, P. J.

J. H. Underwood, E. M. Gullikson, M. Koike, P. J. Batson, P. E. Denham, K. D. Franck, R. E. Tackaberry, and W. F. Steele, Rev. Sci. Instrum. 67, 3372 (1996).
[CrossRef]

Birch, J.

F. Eriksson, G. A. Johansson, H. M. Hertz, and J. Birch, Proc. SPIE 4506, 14 (2001).

Denham, P. E.

J. H. Underwood, E. M. Gullikson, M. Koike, P. J. Batson, P. E. Denham, K. D. Franck, R. E. Tackaberry, and W. F. Steele, Rev. Sci. Instrum. 67, 3372 (1996).
[CrossRef]

Eriksson, F.

F. Eriksson, G. A. Johansson, H. M. Hertz, and J. Birch, Proc. SPIE 4506, 14 (2001).

Franck, K. D.

J. H. Underwood, E. M. Gullikson, M. Koike, P. J. Batson, P. E. Denham, K. D. Franck, R. E. Tackaberry, and W. F. Steele, Rev. Sci. Instrum. 67, 3372 (1996).
[CrossRef]

Gullikson, E. M.

J. H. Underwood, E. M. Gullikson, M. Koike, P. J. Batson, P. E. Denham, K. D. Franck, R. E. Tackaberry, and W. F. Steele, Rev. Sci. Instrum. 67, 3372 (1996).
[CrossRef]

Gutman, G.

Hertz, H. M.

F. Eriksson, G. A. Johansson, H. M. Hertz, and J. Birch, Proc. SPIE 4506, 14 (2001).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), pp. 281–282.

Jankowski, A. F.

A. F. Jankowski, L. R. Schrawyer, and M. A. Wall, J. Appl. Phys. 68, 5162 (1990).
[CrossRef]

Johansson, G. A.

F. Eriksson, G. A. Johansson, H. M. Hertz, and J. Birch, Proc. SPIE 4506, 14 (2001).

Koike, M.

J. H. Underwood, E. M. Gullikson, M. Koike, P. J. Batson, P. E. Denham, K. D. Franck, R. E. Tackaberry, and W. F. Steele, Rev. Sci. Instrum. 67, 3372 (1996).
[CrossRef]

Schrawyer, L. R.

A. F. Jankowski, L. R. Schrawyer, and M. A. Wall, J. Appl. Phys. 68, 5162 (1990).
[CrossRef]

Seely, J. F.

Stearns, D. G.

D. G. Stearns, J. Appl. Phys. 65, 491 (1989).
[CrossRef]

Steele, W. F.

J. H. Underwood, E. M. Gullikson, M. Koike, P. J. Batson, P. E. Denham, K. D. Franck, R. E. Tackaberry, and W. F. Steele, Rev. Sci. Instrum. 67, 3372 (1996).
[CrossRef]

Tackaberry, R. E.

J. H. Underwood, E. M. Gullikson, M. Koike, P. J. Batson, P. E. Denham, K. D. Franck, R. E. Tackaberry, and W. F. Steele, Rev. Sci. Instrum. 67, 3372 (1996).
[CrossRef]

Underwood, J. H.

J. H. Underwood, E. M. Gullikson, M. Koike, P. J. Batson, P. E. Denham, K. D. Franck, R. E. Tackaberry, and W. F. Steele, Rev. Sci. Instrum. 67, 3372 (1996).
[CrossRef]

Wall, M. A.

A. F. Jankowski, L. R. Schrawyer, and M. A. Wall, J. Appl. Phys. 68, 5162 (1990).
[CrossRef]

Walton, C. C.

C. C. Walton, “Ultra-short-period W/B4C multilayers for x-ray optics—microstructure limits on reflectivity,” Ph.D. dissertation University of California, Berkeley, Berkeley, Calif., (1997).

Waskiewicz, W. K.

D. L. Windt and W. K. Waskiewicz, J. Vac. Sci. Technol. B 12, 3826 (1994).
[CrossRef]

Windt, D. L.

D. L. Windt, Computers Phys. 12, 360 (1998).
[CrossRef]

D. L. Windt and W. K. Waskiewicz, J. Vac. Sci. Technol. B 12, 3826 (1994).
[CrossRef]

Wood, J.

Appl. Opt.

Computers Phys.

D. L. Windt, Computers Phys. 12, 360 (1998).
[CrossRef]

J. Appl. Phys.

D. G. Stearns, J. Appl. Phys. 65, 491 (1989).
[CrossRef]

A. F. Jankowski, L. R. Schrawyer, and M. A. Wall, J. Appl. Phys. 68, 5162 (1990).
[CrossRef]

J. Vac. Sci. Technol. B

D. L. Windt and W. K. Waskiewicz, J. Vac. Sci. Technol. B 12, 3826 (1994).
[CrossRef]

J. X-Ray Sci. Technol.

G. Gutman, J. X-Ray Sci. Technol. 4, 142 (1994).

Proc. SPIE

F. Eriksson, G. A. Johansson, H. M. Hertz, and J. Birch, Proc. SPIE 4506, 14 (2001).

Rev. Sci. Instrum.

J. H. Underwood, E. M. Gullikson, M. Koike, P. J. Batson, P. E. Denham, K. D. Franck, R. E. Tackaberry, and W. F. Steele, Rev. Sci. Instrum. 67, 3372 (1996).
[CrossRef]

Other

The validity of relating interface width parameter s (used in the modified Fresnel formalism to describe the x-ray reflectance data) to a precise physical description of the interface remains to be determined comprehensively, particularly when s is comparable to the layer thickness. Nevertheless, even in multilayers that locally have large interface widths or discontinuous layers, we find s to be a useful parameter with which to quantify the interface width and to compare multilayers and multilayer systems.

C. C. Walton, “Ultra-short-period W/B4C multilayers for x-ray optics—microstructure limits on reflectivity,” Ph.D. dissertation University of California, Berkeley, Berkeley, Calif., (1997).

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), pp. 281–282.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Interface widths σ determined for grazing-incidence XRR measurements made on W/B4C multilayers as a function of the fractional W layer thickness Γ. Also shown are the theoretical peak normal-incidence soft-x-ray reflectance values R for these same films, based on the measured σ values.

Fig. 2
Fig. 2

Grazing-incidence XRR measurements λ=0.154 nm for periodic W/B4C multilayers having N=300 bilayers, Γ=0.21, with periods in the range d=1.20.7 nm, as indicated.

Fig. 3
Fig. 3

Normal-incidence soft-x-ray reflectance measurements of the films shown in Fig. 2, made using synchrotron radiation. The measurements were all made at θ=2.5° incidence, except for the two curves peaked near λ=1.55 nm and λ=1.39 nm, which were made at θ=15° and θ=30°, respectively. Fits to these data indicate interface widths σ=0.29 nm in all cases.

Metrics