Abstract

All-optical active mode locking of a picosecond Nd:YVO4 laser is demonstrated by use of an intracavity semiconductor nonlinear Fabry–Perot mirror. The reflectivity of the Fabry–Perot mirror is modulated by optical carrier injection. Depending on the carrier recombination time, the width of the Nd:YVO4 laser pulses varies from 6 to 20 ps, as is typical for passively mode-locked Nd:YVO4 lasers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. H. Bonadeo, W. H. Knox, J. M. Roth, and K. Bergman, Opt. Lett. 25, 1421 (2000).
    [CrossRef]
  2. M. DiDomenico, J. Appl. Phys. 35, 2870 (1964).
    [CrossRef]
  3. L. E. Hargrove, R. L. Fork, and M. A. Pollack, Appl. Phys. Lett. 5, 4 (1964).
    [CrossRef]
  4. E. P. Ippen, Appl. Phys. B 58, 159 (1994).
    [CrossRef]
  5. W. Seitz, T. R. Schibli, U. Morgner, F. X. Kärtner, C. H. Lange, W. Richter, and B. Braun, Opt. Lett. 27, 454 (2002).
    [CrossRef]
  6. J. D. Kafka, M. L. Watts, and J. W. Pieterse, J. Opt. Soc. Am. B 12, 2147 (1995).
    [CrossRef]
  7. B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
    [CrossRef]
  8. L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
    [CrossRef]
  9. D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970).
    [CrossRef]
  10. H. A. Haus, IEEE J. Quantum Electron. QE-11, 323 (1975).
    [CrossRef]
  11. J. Paye and D. Hulin, Appl. Phys. Lett. 62, 1326 (1992).
    [CrossRef]
  12. R. Quintero-Torres and M. Thakur, Appl. Phys. Lett. 66, 1310 (1995).
    [CrossRef]
  13. J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, Appl. Phys. Lett. 58, 2877 (1991).
    [CrossRef]
  14. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, M. Haiml, U. Siegner, and U. Keller, Appl. Phys. Lett. 74, 1993 (1999).
    [CrossRef]
  15. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, Opt. Lett. 26, 373 (2001).
    [CrossRef]

2002

2001

2000

1999

M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, M. Haiml, U. Siegner, and U. Keller, Appl. Phys. Lett. 74, 1993 (1999).
[CrossRef]

1998

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

1995

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

R. Quintero-Torres and M. Thakur, Appl. Phys. Lett. 66, 1310 (1995).
[CrossRef]

J. D. Kafka, M. L. Watts, and J. W. Pieterse, J. Opt. Soc. Am. B 12, 2147 (1995).
[CrossRef]

1994

E. P. Ippen, Appl. Phys. B 58, 159 (1994).
[CrossRef]

1992

J. Paye and D. Hulin, Appl. Phys. Lett. 62, 1326 (1992).
[CrossRef]

1991

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, Appl. Phys. Lett. 58, 2877 (1991).
[CrossRef]

1975

H. A. Haus, IEEE J. Quantum Electron. QE-11, 323 (1975).
[CrossRef]

1970

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

1964

M. DiDomenico, J. Appl. Phys. 35, 2870 (1964).
[CrossRef]

L. E. Hargrove, R. L. Fork, and M. A. Pollack, Appl. Phys. Lett. 5, 4 (1964).
[CrossRef]

Angelow, G.

Bergman, K.

Boiko, A.

Bonadeo, N. H.

Braun, B.

Brovelli, L. R.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

Cunningham, J. E.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

DiDomenico, M.

M. DiDomenico, J. Appl. Phys. 35, 2870 (1964).
[CrossRef]

Ell, R.

Fork, R. L.

L. E. Hargrove, R. L. Fork, and M. A. Pollack, Appl. Phys. Lett. 5, 4 (1964).
[CrossRef]

Fujimoto, J. G.

Goossen, K. W.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

Haiml, M.

M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, M. Haiml, U. Siegner, and U. Keller, Appl. Phys. Lett. 74, 1993 (1999).
[CrossRef]

Hargrove, L. E.

L. E. Hargrove, R. L. Fork, and M. A. Pollack, Appl. Phys. Lett. 5, 4 (1964).
[CrossRef]

Haus, H. A.

H. A. Haus, IEEE J. Quantum Electron. QE-11, 323 (1975).
[CrossRef]

Heffernan, J. F.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, Appl. Phys. Lett. 58, 2877 (1991).
[CrossRef]

Hegarty, J.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, Appl. Phys. Lett. 58, 2877 (1991).
[CrossRef]

Hulin, D.

J. Paye and D. Hulin, Appl. Phys. Lett. 62, 1326 (1992).
[CrossRef]

Ippen, E. P.

Jagadish, C.

M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, M. Haiml, U. Siegner, and U. Keller, Appl. Phys. Lett. 74, 1993 (1999).
[CrossRef]

Kafka, J. D.

Kärtner, F. X.

Keller, U.

M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, M. Haiml, U. Siegner, and U. Keller, Appl. Phys. Lett. 74, 1993 (1999).
[CrossRef]

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

Knox, W. H.

Kuizenga, D. J.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

Lange, C. H.

Lanker, M.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

Lederer, M. J.

R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, Opt. Lett. 26, 373 (2001).
[CrossRef]

M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, M. Haiml, U. Siegner, and U. Keller, Appl. Phys. Lett. 74, 1993 (1999).
[CrossRef]

Luther-Davies, B.

R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, Opt. Lett. 26, 373 (2001).
[CrossRef]

M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, M. Haiml, U. Siegner, and U. Keller, Appl. Phys. Lett. 74, 1993 (1999).
[CrossRef]

Moloney, M. H.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, Appl. Phys. Lett. 58, 2877 (1991).
[CrossRef]

Morgner, U.

Nebel, A.

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

Paye, J.

J. Paye and D. Hulin, Appl. Phys. Lett. 62, 1326 (1992).
[CrossRef]

Pieterse, J. W.

Pollack, M. A.

L. E. Hargrove, R. L. Fork, and M. A. Pollack, Appl. Phys. Lett. 5, 4 (1964).
[CrossRef]

Quintero-Torres, R.

R. Quintero-Torres and M. Thakur, Appl. Phys. Lett. 66, 1310 (1995).
[CrossRef]

Richter, W.

Roberts, J. S.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, Appl. Phys. Lett. 58, 2877 (1991).
[CrossRef]

Roth, J. M.

Ruffing, B.

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

Scheuer, V.

Schibli, T. R.

Seitz, W.

Siegman, A. E.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

Siegner, U.

M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, M. Haiml, U. Siegner, and U. Keller, Appl. Phys. Lett. 74, 1993 (1999).
[CrossRef]

Tan, H. H.

M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, M. Haiml, U. Siegner, and U. Keller, Appl. Phys. Lett. 74, 1993 (1999).
[CrossRef]

Thakur, M.

R. Quintero-Torres and M. Thakur, Appl. Phys. Lett. 66, 1310 (1995).
[CrossRef]

Tschudi, T.

Walker, J. A.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

Wallenstein, R.

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

Watts, M. L.

Whitehead, M.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, Appl. Phys. Lett. 58, 2877 (1991).
[CrossRef]

Appl. Phys. B

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

E. P. Ippen, Appl. Phys. B 58, 159 (1994).
[CrossRef]

Appl. Phys. Lett.

L. E. Hargrove, R. L. Fork, and M. A. Pollack, Appl. Phys. Lett. 5, 4 (1964).
[CrossRef]

J. Paye and D. Hulin, Appl. Phys. Lett. 62, 1326 (1992).
[CrossRef]

R. Quintero-Torres and M. Thakur, Appl. Phys. Lett. 66, 1310 (1995).
[CrossRef]

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, Appl. Phys. Lett. 58, 2877 (1991).
[CrossRef]

M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, M. Haiml, U. Siegner, and U. Keller, Appl. Phys. Lett. 74, 1993 (1999).
[CrossRef]

Electron. Lett.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

IEEE J. Quantum Electron.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

H. A. Haus, IEEE J. Quantum Electron. QE-11, 323 (1975).
[CrossRef]

J. Appl. Phys.

M. DiDomenico, J. Appl. Phys. 35, 2870 (1964).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic drawing of the reflectivity of the FPM near resonance before carrier generation (solid curve) and after carrier generation (dashed curve) in the active layer of the FPM. (b) Reflectivity change as a result of the resonance shift shown in (a).

Fig. 2
Fig. 2

(a) Measured reflectivity change of sample FPM3 at zero time delay between the pump and the probe pulses. (b) Measurement of the temporal response of sample FPM3 at spectral positions above resonance (1022 nm, solid curve) and below resonance (1015 nm, dashed curve). The spectral positions are indicated by arrows in (a).

Fig. 3
Fig. 3

Schematic drawing of an actively mode-locked Nd:YVO4 laser with the FPM as an end mirror of the cavity. The Ti:sapphire laser output modulates the intracavity losses of the Nd:YVO4 laser by means of the FPM.

Fig. 4
Fig. 4

(a) Measured intensity autocorrelation traces of the actively mode-locked Nd:YVO4 laser on a logarithmic scale. The curves correspond to the FPM samples: dashed curve, FPM1; solid curve, FPM3; dotted-dashed curve, FPM5. (b) Shortest pulse widths τFWHM achieved with the different samples plotted as a function of the square root of the carrier lifetimes τr of the samples. The dashed line is a linear fit of the measured data points (filled circles).

Tables (1)

Tables Icon

Table 1 Characteristic Parameters of the Various FPMs

Metrics