Abstract

We have demonstrated what is to our knowledge the first successful achievement of multiwavelength conversion in an aperiodic optical superlattice (AOS) lithium niobate crystal with equalized gain. The two AOS devices in our experiment, numerically synthesized from 2857 crystal blocks with a unit block thickness of 3.5 µm, have fundamental wavelengths of 1540 and 1545 nm for double-wavelength second-harmonic generation (SHG) and of 1540, 1545, and 1553 nm for triple-wavelength SHG at 50 °C. Our experiment and simulation show that the output spectrum of an AOS wavelength converter is fairly insensitive to typical fabrication errors.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Perban, Phys. Rev. Lett. 127, 1918 (1962).
  2. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  3. M. A. Arbore, O. Marco, and M. M. Fejer, Opt. Lett. 22, 865 (1997).
    [CrossRef] [PubMed]
  4. G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, Opt. Lett. 23, 864 (1998).
    [CrossRef]
  5. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
    [CrossRef]
  6. B.-Y. Gu, Y. Zhang, and B.-Z. Dong, J. Appl. Phys. 87, 7629 (2000).
    [CrossRef]
  7. M. H. Chou, K. R. Parameswaran, and M. M. Fejer, Opt. Lett. 24, 1157 (1999).
    [CrossRef]
  8. B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
    [CrossRef]
  9. J. Wu, T. Kondo, and R. Ito, J. Lightwave Technol. 13, 456 (1995).
    [CrossRef]

2000 (1)

B.-Y. Gu, Y. Zhang, and B.-Z. Dong, J. Appl. Phys. 87, 7629 (2000).
[CrossRef]

1999 (2)

M. H. Chou, K. R. Parameswaran, and M. M. Fejer, Opt. Lett. 24, 1157 (1999).
[CrossRef]

B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
[CrossRef]

1998 (1)

1997 (2)

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
[CrossRef]

M. A. Arbore, O. Marco, and M. M. Fejer, Opt. Lett. 22, 865 (1997).
[CrossRef] [PubMed]

1995 (2)

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Perban, Phys. Rev. Lett. 127, 1918 (1962).

Arbore, M. A.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Perban, Phys. Rev. Lett. 127, 1918 (1962).

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Perban, Phys. Rev. Lett. 127, 1918 (1962).

Bosenberg, W. R.

Byer, R. L.

Chou, M. H.

Dong, B.-Z.

B.-Y. Gu, Y. Zhang, and B.-Z. Dong, J. Appl. Phys. 87, 7629 (2000).
[CrossRef]

B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Perban, Phys. Rev. Lett. 127, 1918 (1962).

Eckardt, R. C.

Fejer, M. M.

Galvanauskas, A.

Gu, B.-Y.

B.-Y. Gu, Y. Zhang, and B.-Z. Dong, J. Appl. Phys. 87, 7629 (2000).
[CrossRef]

B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
[CrossRef]

Harter, D.

Imeshev, G.

Ito, R.

J. Wu, T. Kondo, and R. Ito, J. Lightwave Technol. 13, 456 (1995).
[CrossRef]

Kondo, T.

J. Wu, T. Kondo, and R. Ito, J. Lightwave Technol. 13, 456 (1995).
[CrossRef]

Marco, O.

Ming, N. B.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
[CrossRef]

Myers, L. E.

Parameswaran, K. R.

Perban, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Perban, Phys. Rev. Lett. 127, 1918 (1962).

Pierce, J. W.

Proctor, M.

Wu, J.

J. Wu, T. Kondo, and R. Ito, J. Lightwave Technol. 13, 456 (1995).
[CrossRef]

Yang, G.-Z.

B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
[CrossRef]

Zhang, Y.

B.-Y. Gu, Y. Zhang, and B.-Z. Dong, J. Appl. Phys. 87, 7629 (2000).
[CrossRef]

B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
[CrossRef]

Zhu, S. N.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
[CrossRef]

Zhu, Y. Y.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
[CrossRef]

J. Appl. Phys. (1)

B.-Y. Gu, Y. Zhang, and B.-Z. Dong, J. Appl. Phys. 87, 7629 (2000).
[CrossRef]

J. Lightwave Technol. (1)

J. Wu, T. Kondo, and R. Ito, J. Lightwave Technol. 13, 456 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Perban, Phys. Rev. Lett. 127, 1918 (1962).

Science (1)

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic plot of an AOS crystal, wherein xq is the qth crystal boundary of an ideal AOS crystal and dx is the length of a unit crystal block. With fabrication errors, xq is the qth crystal boundary position, Δx is the uniformly overpoled domain length, and x is the random variation in Δx. (b) Typical section of the HF-etched AOS crystal used in our experiment. The unit crystal block’s length dx is 3.5 µm.

Fig. 2
Fig. 2

Experimental (filled circles) and theoretical (solid curves) conversion efficiencies of (a) the double-wavelength and (b) the triple-wavelength AOS SHG. The vertical axes are normalized to the peak SHG conversion efficiency of the 18.9µm-period SHG PPLN, and the horizontal axes are the fundamental wavelength. Inset, output spectrum of triple-wavelength PRS SHG, in which the peak conversion efficiency is lower and the sideband power is higher.

Fig. 3
Fig. 3

Simulation result for the AOS crystal with random domain errors of x/dx20% and x/dx30% at a uniformly overpoled average error of Δx/dx=20%. The AOS output spectrum is not sensitive to fabrication errors.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ηSHGλ=ηeffλq=0N-1xqxq+1d˜q expiΔkxdx2,
ηeffλ=8π2d332Iωc0λ2n2ωnω2,

Metrics