Abstract

The conditions for creation of broadband localized optical fields (Bessel X pulses and focus wave modes) in dispersive media are analyzed. It is shown that transmission of focus wave modes with subcycle pulse durations through fused silica is possible.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Brittingham, J. Appl. Phys. 54, 1179 (1983).
    [CrossRef]
  2. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
    [CrossRef]
  3. R. W. Ziolkowski, Phys. Rev. A 44, 3960 (1991).
    [CrossRef] [PubMed]
  4. J. Lu and J. G. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19 (1992).
    [CrossRef]
  5. J. Fagerholm, A. T. Friberg, J. Huttunen, D. P. Morgan, and M. M. Salomaa, Phys. Rev. E 54, 4347 (1996).
    [CrossRef]
  6. J. Durnin, J. J. Miceli, and J. M. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef] [PubMed]
  7. P. Saari and K. Reivelt, Phys. Rev. Lett. 79, 4135 (1997).
    [CrossRef]
  8. K. Reivelt and P. Saari, J. Opt. Soc. Am. A 17, 1785 (2000).
    [CrossRef]
  9. C. J. R. Sheppard, J. Opt. Soc. Am. A 18, 2594 (2001).
    [CrossRef]
  10. H. Sonajalg and P. Saari, Opt. Lett. 21, 1162 (1996).
    [CrossRef]
  11. H. Sonajalg, M. Rätsep, and P. Saari, Opt. Lett. 22, 310 (1997).
    [CrossRef]
  12. M. A. Porras, Opt. Lett. 26, 1364 (2001).
    [CrossRef]
  13. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials (Wiley, Chichester, UK, 1997).
  14. S. Orlov, A. Piskarskas, and A. Stabinis, Opt. Lett. 27, 2103 (2002).
    [CrossRef]

2002

2001

2000

1997

P. Saari and K. Reivelt, Phys. Rev. Lett. 79, 4135 (1997).
[CrossRef]

H. Sonajalg, M. Rätsep, and P. Saari, Opt. Lett. 22, 310 (1997).
[CrossRef]

1996

H. Sonajalg and P. Saari, Opt. Lett. 21, 1162 (1996).
[CrossRef]

J. Fagerholm, A. T. Friberg, J. Huttunen, D. P. Morgan, and M. M. Salomaa, Phys. Rev. E 54, 4347 (1996).
[CrossRef]

1992

J. Lu and J. G. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19 (1992).
[CrossRef]

1991

R. W. Ziolkowski, Phys. Rev. A 44, 3960 (1991).
[CrossRef] [PubMed]

1987

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[CrossRef]

J. Durnin, J. J. Miceli, and J. M. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

1983

J. N. Brittingham, J. Appl. Phys. 54, 1179 (1983).
[CrossRef]

Brittingham, J. N.

J. N. Brittingham, J. Appl. Phys. 54, 1179 (1983).
[CrossRef]

Durnin, J.

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[CrossRef]

J. Durnin, J. J. Miceli, and J. M. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Eberly, J. M.

J. Durnin, J. J. Miceli, and J. M. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Fagerholm, J.

J. Fagerholm, A. T. Friberg, J. Huttunen, D. P. Morgan, and M. M. Salomaa, Phys. Rev. E 54, 4347 (1996).
[CrossRef]

Friberg, A. T.

J. Fagerholm, A. T. Friberg, J. Huttunen, D. P. Morgan, and M. M. Salomaa, Phys. Rev. E 54, 4347 (1996).
[CrossRef]

Greenleaf, J. G.

J. Lu and J. G. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19 (1992).
[CrossRef]

Huttunen, J.

J. Fagerholm, A. T. Friberg, J. Huttunen, D. P. Morgan, and M. M. Salomaa, Phys. Rev. E 54, 4347 (1996).
[CrossRef]

Lu, J.

J. Lu and J. G. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19 (1992).
[CrossRef]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. M. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Morgan, D. P.

J. Fagerholm, A. T. Friberg, J. Huttunen, D. P. Morgan, and M. M. Salomaa, Phys. Rev. E 54, 4347 (1996).
[CrossRef]

Nikogosyan, D. N.

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials (Wiley, Chichester, UK, 1997).

Orlov, S.

Piskarskas, A.

Porras, M. A.

Rätsep, M.

Reivelt, K.

K. Reivelt and P. Saari, J. Opt. Soc. Am. A 17, 1785 (2000).
[CrossRef]

P. Saari and K. Reivelt, Phys. Rev. Lett. 79, 4135 (1997).
[CrossRef]

Saari, P.

Salomaa, M. M.

J. Fagerholm, A. T. Friberg, J. Huttunen, D. P. Morgan, and M. M. Salomaa, Phys. Rev. E 54, 4347 (1996).
[CrossRef]

Sheppard, C. J. R.

Sonajalg, H.

Stabinis, A.

Ziolkowski, R. W.

R. W. Ziolkowski, Phys. Rev. A 44, 3960 (1991).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

J. Lu and J. G. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19 (1992).
[CrossRef]

J. Appl. Phys.

J. N. Brittingham, J. Appl. Phys. 54, 1179 (1983).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Phys. Rev. A

R. W. Ziolkowski, Phys. Rev. A 44, 3960 (1991).
[CrossRef] [PubMed]

Phys. Rev. E

J. Fagerholm, A. T. Friberg, J. Huttunen, D. P. Morgan, and M. M. Salomaa, Phys. Rev. E 54, 4347 (1996).
[CrossRef]

Phys. Rev. Lett.

J. Durnin, J. J. Miceli, and J. M. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

P. Saari and K. Reivelt, Phys. Rev. Lett. 79, 4135 (1997).
[CrossRef]

Other

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials (Wiley, Chichester, UK, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Angular dispersion curves of a Bessel X pulse in fused silica. The numerical values of parameter λc (in micrometers) are 1, 0.8; 2, 1.0; 3, 1.6; and 4, 2.0.

Fig. 2
Fig. 2

Dispersion of effective refractive index nef of FWMs in fused silica for λc=1 µm. The numerical values of parameter a (in micrometers) are 1, ; 2, -79.23; 3, -60; 4, -38.27; and 5, -35.

Fig. 3
Fig. 3

Angular dispersion curves of FWM in fused silica. The numerical values of parameter a (in micrometers) are 1, ; 2, -90; 3, -85.55; 4, -79.23; 5, -70; and 6, -38.27. λc=1 µm.

Fig. 4
Fig. 4

Dependence of normalized spectral widths γ1, γ2, and γ3 for a Bessel X pulse (γ1; solid curve 1) and FWMs (γ2,γ3; solid curves 2 and 3, respectively) in fused silica. The values γ2 and γ3 are calculated for optimum values a1 and a2, respectively, at each value of λc. Dotted curves, the corresponding central frequencies of pulsed beams. Wavelength λ0 corresponds to zero group-velocity dispersion in fused silica.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Er,z,t=0SωJ0kr×expikzz-ωtdω,
nωcos θ=c/v+cγ/ω
Er,z/v-t=expiγz0SωJ0kr×expiωz/v-tdω,
nλcos θ=nc+λ-λc/a,
γ1=2λc-λmin/λc+λmin.
neffλcos θ=nc,
γ2=2λmax-λc/λmax+λc.
γ3=2λr-λmin/λr+λmin.

Metrics