Abstract

Multiple scattering calculations of the electromagnetic force and the potential energy exerted by an evanescent field on a nanometric cylinder over a dielectric interface, as well as by a propagating Gaussian beam, are carried out. These calculations constitute a model that describes the gradient, scattering, and absorption components of the force in an elongated particle. The attractive or repulsive nature of the force is strongly dependent on the polarization of the incident field for a metallic particle, whereas a dielectric particle is only weakly attracted to high-intensity regions. Excitation of plasmon resonance in a metallic particle enhances both the scattering and the absorption components of the force, whereas it diminishes the gradient-force component.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions

J. R. Arias-González and M. Nieto-Vesperinas
J. Opt. Soc. Am. A 20(7) 1201-1209 (2003)

Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogeneous and inhomogeneous lightwave excitation

José Ricardo Arias-González and Manuel Nieto-Vesperinas
J. Opt. Soc. Am. A 18(3) 657-665 (2001)

Gaussian beam scattering by two parallel nonabsorbing dielectric cylinders: displacement and rotational degrees of freedom

André Gondim Simão, José Paulo Rodrigues Furtado de Mendonça, Luiz Gallisa Guimarães, and Pedro Cláudio Guaranho de Moraes
Appl. Opt. 47(36) 6701-6709 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription