Abstract

A periodic pattern of hundreds of beams is shifted by half its transverse period as the result of excitation of parametric spatial solitons and the fractional Talbot effect. The all-optical switch that is obtained operates with 1-ps pulses.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Lugiato, Phys. Rep. 219, 293 (1992).
    [CrossRef]
  2. C. O. Weiss, Phys. Rep. 219, 311 (1992).
    [CrossRef]
  3. M. Brambilla, L. Lugiato, M. V. Pinna, F. Prati, P. Pagani, P. Vanotti, M. Y. Li, and C. O. Weiss, Opt. Commun. 92, 145 (1992).
    [CrossRef]
  4. V. B. Taranenko, C. O. Weiss, and W. Stoltz, Opt. Lett. 26, 1574 (2001).
    [CrossRef]
  5. B. Schäpers, M. Feldmann, T. Akemann, and W. Lange, Phys. Rev. Lett. 85, 748 (2000).
    [CrossRef]
  6. See special issue on optical solitons, Opt. Photon. News 13(2), 20–76 (2002).
  7. W. E. Toruellas, G. Assanto, B. L. Lawrence, R. A. Fuerst, and G. I. Stegeman, Appl. Phys. Lett. 68, 1449 (1996).
    [CrossRef]
  8. Y. Baek, R. Schiek, G. I. Stegeman, I. Bauman, and W. Sohler, Opt. Lett. 22, 1550 (1997).
    [CrossRef]
  9. H. Lopez-Lago, C. Simos, V. Couderc, and A. Barthelemy, Opt. Lett. 26, 905 (2001).
    [CrossRef]
  10. L. Torner and D. V. Petrov, Electron. Lett. 33, 608 (1997).
    [CrossRef]
  11. S. Minardi, G. Molina-Terriza, P. Di Trapani, J. P. Torres, and L. Torner, Opt. Lett. 26, 1004 (2001).
    [CrossRef]
  12. M. T. G. Canva, R. A. Fuerst, S. Baboiu, G. I. Stegeman, and G. Assanto, Opt. Lett. 22, 1683 (1997).
    [CrossRef]
  13. M. Mansuripur, Opt. Photon. News 8(4), 42, (1997).
  14. J. T. Wintrop and C. R. Worthington, J. Opt. Soc. Am. 55, 373 (1965).
  15. S. Mindardi, S. Sapone, W. Chinaglia, P. Di Trapani, and A. Beržanskis, Opt. Lett. 25, 326 (2000).
    [CrossRef]
  16. A. Bramati, W. Chinaglia, S. Minardi, and P. Di Trapani, Opt. Lett. 26, 1409 (2001).
    [CrossRef]
  17. D. H. Kelley, Appl. Opt. 4, 435 (1965).
    [CrossRef]

2002 (1)

See special issue on optical solitons, Opt. Photon. News 13(2), 20–76 (2002).

2001 (4)

2000 (2)

S. Mindardi, S. Sapone, W. Chinaglia, P. Di Trapani, and A. Beržanskis, Opt. Lett. 25, 326 (2000).
[CrossRef]

B. Schäpers, M. Feldmann, T. Akemann, and W. Lange, Phys. Rev. Lett. 85, 748 (2000).
[CrossRef]

1997 (4)

1996 (1)

W. E. Toruellas, G. Assanto, B. L. Lawrence, R. A. Fuerst, and G. I. Stegeman, Appl. Phys. Lett. 68, 1449 (1996).
[CrossRef]

1992 (3)

L. Lugiato, Phys. Rep. 219, 293 (1992).
[CrossRef]

C. O. Weiss, Phys. Rep. 219, 311 (1992).
[CrossRef]

M. Brambilla, L. Lugiato, M. V. Pinna, F. Prati, P. Pagani, P. Vanotti, M. Y. Li, and C. O. Weiss, Opt. Commun. 92, 145 (1992).
[CrossRef]

1965 (2)

Akemann, T.

B. Schäpers, M. Feldmann, T. Akemann, and W. Lange, Phys. Rev. Lett. 85, 748 (2000).
[CrossRef]

Assanto, G.

M. T. G. Canva, R. A. Fuerst, S. Baboiu, G. I. Stegeman, and G. Assanto, Opt. Lett. 22, 1683 (1997).
[CrossRef]

W. E. Toruellas, G. Assanto, B. L. Lawrence, R. A. Fuerst, and G. I. Stegeman, Appl. Phys. Lett. 68, 1449 (1996).
[CrossRef]

Baboiu, S.

Baek, Y.

Barthelemy, A.

Bauman, I.

Beržanskis, A.

Bramati, A.

Brambilla, M.

M. Brambilla, L. Lugiato, M. V. Pinna, F. Prati, P. Pagani, P. Vanotti, M. Y. Li, and C. O. Weiss, Opt. Commun. 92, 145 (1992).
[CrossRef]

Canva, M. T. G.

Chinaglia, W.

Couderc, V.

Di Trapani, P.

Feldmann, M.

B. Schäpers, M. Feldmann, T. Akemann, and W. Lange, Phys. Rev. Lett. 85, 748 (2000).
[CrossRef]

Fuerst, R. A.

M. T. G. Canva, R. A. Fuerst, S. Baboiu, G. I. Stegeman, and G. Assanto, Opt. Lett. 22, 1683 (1997).
[CrossRef]

W. E. Toruellas, G. Assanto, B. L. Lawrence, R. A. Fuerst, and G. I. Stegeman, Appl. Phys. Lett. 68, 1449 (1996).
[CrossRef]

Kelley, D. H.

Lange, W.

B. Schäpers, M. Feldmann, T. Akemann, and W. Lange, Phys. Rev. Lett. 85, 748 (2000).
[CrossRef]

Lawrence, B. L.

W. E. Toruellas, G. Assanto, B. L. Lawrence, R. A. Fuerst, and G. I. Stegeman, Appl. Phys. Lett. 68, 1449 (1996).
[CrossRef]

Li, M. Y.

M. Brambilla, L. Lugiato, M. V. Pinna, F. Prati, P. Pagani, P. Vanotti, M. Y. Li, and C. O. Weiss, Opt. Commun. 92, 145 (1992).
[CrossRef]

Lopez-Lago, H.

Lugiato, L.

M. Brambilla, L. Lugiato, M. V. Pinna, F. Prati, P. Pagani, P. Vanotti, M. Y. Li, and C. O. Weiss, Opt. Commun. 92, 145 (1992).
[CrossRef]

L. Lugiato, Phys. Rep. 219, 293 (1992).
[CrossRef]

Mansuripur, M.

M. Mansuripur, Opt. Photon. News 8(4), 42, (1997).

Minardi, S.

Mindardi, S.

Molina-Terriza, G.

Pagani, P.

M. Brambilla, L. Lugiato, M. V. Pinna, F. Prati, P. Pagani, P. Vanotti, M. Y. Li, and C. O. Weiss, Opt. Commun. 92, 145 (1992).
[CrossRef]

Petrov, D. V.

L. Torner and D. V. Petrov, Electron. Lett. 33, 608 (1997).
[CrossRef]

Pinna, M. V.

M. Brambilla, L. Lugiato, M. V. Pinna, F. Prati, P. Pagani, P. Vanotti, M. Y. Li, and C. O. Weiss, Opt. Commun. 92, 145 (1992).
[CrossRef]

Prati, F.

M. Brambilla, L. Lugiato, M. V. Pinna, F. Prati, P. Pagani, P. Vanotti, M. Y. Li, and C. O. Weiss, Opt. Commun. 92, 145 (1992).
[CrossRef]

Sapone, S.

Schäpers, B.

B. Schäpers, M. Feldmann, T. Akemann, and W. Lange, Phys. Rev. Lett. 85, 748 (2000).
[CrossRef]

Schiek, R.

Simos, C.

Sohler, W.

Stegeman, G. I.

Stoltz, W.

Taranenko, V. B.

Torner, L.

Torres, J. P.

Toruellas, W. E.

W. E. Toruellas, G. Assanto, B. L. Lawrence, R. A. Fuerst, and G. I. Stegeman, Appl. Phys. Lett. 68, 1449 (1996).
[CrossRef]

Vanotti, P.

M. Brambilla, L. Lugiato, M. V. Pinna, F. Prati, P. Pagani, P. Vanotti, M. Y. Li, and C. O. Weiss, Opt. Commun. 92, 145 (1992).
[CrossRef]

Weiss, C. O.

V. B. Taranenko, C. O. Weiss, and W. Stoltz, Opt. Lett. 26, 1574 (2001).
[CrossRef]

M. Brambilla, L. Lugiato, M. V. Pinna, F. Prati, P. Pagani, P. Vanotti, M. Y. Li, and C. O. Weiss, Opt. Commun. 92, 145 (1992).
[CrossRef]

C. O. Weiss, Phys. Rep. 219, 311 (1992).
[CrossRef]

Wintrop, J. T.

Worthington, C. R.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. E. Toruellas, G. Assanto, B. L. Lawrence, R. A. Fuerst, and G. I. Stegeman, Appl. Phys. Lett. 68, 1449 (1996).
[CrossRef]

Electron. Lett. (1)

L. Torner and D. V. Petrov, Electron. Lett. 33, 608 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

M. Brambilla, L. Lugiato, M. V. Pinna, F. Prati, P. Pagani, P. Vanotti, M. Y. Li, and C. O. Weiss, Opt. Commun. 92, 145 (1992).
[CrossRef]

Opt. Lett. (7)

Opt. Photon. News (2)

See special issue on optical solitons, Opt. Photon. News 13(2), 20–76 (2002).

M. Mansuripur, Opt. Photon. News 8(4), 42, (1997).

Phys. Rep. (2)

L. Lugiato, Phys. Rep. 219, 293 (1992).
[CrossRef]

C. O. Weiss, Phys. Rep. 219, 311 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

B. Schäpers, M. Feldmann, T. Akemann, and W. Lange, Phys. Rev. Lett. 85, 748 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Results of a numerical simulation: Four unit cells of the (infinite) lattice are shown. (a) Input pump profile. (b) Output pump profile in the unseeded configuration (array 1). Only a white seed at the quantum noise level is present. (c) Output pump profile when a seed is launched simultaneously (array 2). The seed profile is as in (a), but the peaks are twice as wide to ensure the same diffraction length for both the pump and the seed. Peak intensity of the pump, 40 GW/cm2; crystal length, 22 mm. The side of each frame is 170 µm long.

Fig. 2
Fig. 2

(a) Experimental output fluence profiles along the diagonal of two unit cells of the multibeam array. Dashed curve, unseeded configuration (array 1); solid curve, seeded configuration (array 2). (b), (c) Corresponding bidimensional fluence maps, in unseeded and seeded configurations, respectively. The diagonal lines in the contour maps represent the sampling line we used to get the fluence profiles depicted in (a). The overall energy of the pump was fixed to 330 µJ, and the seeding beam carried 125 µJ, both distributed over an area of 3 mm×3 mm (crystal area corresponding to approximately 33×33 beams; maximum energy content of the unit cell, 0.5 µJ). The dimensions of the frames are 150 µm×180 µm; the beam diameter (FWHM) of the solitons is estimated in 17 µm.

Fig. 3
Fig. 3

On–off visibility of arrays 1 and 2 as a function of the overall (a) pump and (b) seed energies.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Von/offj=FHj-FLjFHj+FLj, j=1,2,

Metrics