Abstract

The application of quantitative phase microscopy to refractive-index profiling of optical fibers is demonstrated. Phase images of axially symmetric optical fibers immersed in index-matching fluid are obtained, and the inverse Abel transform is used to obtain the radial refractive-index profile. This technique is straightforward, nondestructive, repeatable, and accurate. Excellent agreement, to within approximately 0.0005, between this method and the index profile obtained with a commercial profiler is obtained.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, Opt. Lett. 23, 817 (1998).
    [CrossRef]
  2. K. Iga, Y. Kokubun, and M. Oikawa, Microoptics: Distributed-Index, Microlens and Stacked Planar Optics (Academic, Tokyo, 1984), pp. 139–176.
  3. M. Young, Appl. Opt. 20, 3415 (1981).
    [CrossRef]
  4. K. W. Raine, J. G. N. Baines, and D. E. Putland, J. Lightwave Technol. 7, 1162 (1989).
    [CrossRef]
  5. D. L. Franzen, M. Young, A. H. Cherin, E. D. Head, M. J. Hackert, K. W. Raine, and J. G. N. Baines, J. Lightwave Technol. 7, 896 (1989).
    [CrossRef]
  6. L. McCaughan and E. E. Bergmanne, J. Lightwave Technol. 1, 241 (1983).
    [CrossRef]
  7. C. Saekeang and P. J. Chu, Appl. Opt. 18, 1110 (1979).
    [CrossRef] [PubMed]
  8. H. M. Presby, D. Marcuse, and H. M. Astle, Appl. Opt. 17, 2209 (1978).
    [CrossRef] [PubMed]
  9. M. E. Marhic, P. S. Ho, and M. Epstein, Appl. Phys. Lett. 26, 574 (1975).
    [CrossRef]
  10. K. Tatekura, Appl. Opt. 22, 460 (1983).
    [CrossRef] [PubMed]
  11. A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, Opt. Commun. 17, 329 (2000).
    [CrossRef]
  12. M. Kalal and K. A. Nugent, Appl. Opt. 27, 1956 (1988).
    [CrossRef] [PubMed]
  13. Iatia, Ltd., www.iatia.com.au .
  14. Q. Zhong and D. Inniss, J. Lightwave Technol. 12, 1517 (1994).
    [CrossRef]
  15. A. Roberts, K. Thorn, M. L. Michna, N. Dragomir, P. Farrell, and G. Baxter, Opt. Lett. 27, 86 (2002).
    [CrossRef]

2002 (1)

2000 (1)

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, Opt. Commun. 17, 329 (2000).
[CrossRef]

1998 (1)

1994 (1)

Q. Zhong and D. Inniss, J. Lightwave Technol. 12, 1517 (1994).
[CrossRef]

1989 (2)

K. W. Raine, J. G. N. Baines, and D. E. Putland, J. Lightwave Technol. 7, 1162 (1989).
[CrossRef]

D. L. Franzen, M. Young, A. H. Cherin, E. D. Head, M. J. Hackert, K. W. Raine, and J. G. N. Baines, J. Lightwave Technol. 7, 896 (1989).
[CrossRef]

1988 (1)

1983 (2)

K. Tatekura, Appl. Opt. 22, 460 (1983).
[CrossRef] [PubMed]

L. McCaughan and E. E. Bergmanne, J. Lightwave Technol. 1, 241 (1983).
[CrossRef]

1981 (1)

1979 (1)

1978 (1)

1975 (1)

M. E. Marhic, P. S. Ho, and M. Epstein, Appl. Phys. Lett. 26, 574 (1975).
[CrossRef]

Astle, H. M.

Baines, J. G. N.

D. L. Franzen, M. Young, A. H. Cherin, E. D. Head, M. J. Hackert, K. W. Raine, and J. G. N. Baines, J. Lightwave Technol. 7, 896 (1989).
[CrossRef]

K. W. Raine, J. G. N. Baines, and D. E. Putland, J. Lightwave Technol. 7, 1162 (1989).
[CrossRef]

Barty, A.

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, Opt. Commun. 17, 329 (2000).
[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, Opt. Lett. 23, 817 (1998).
[CrossRef]

Baxter, G.

Bergmanne, E. E.

L. McCaughan and E. E. Bergmanne, J. Lightwave Technol. 1, 241 (1983).
[CrossRef]

Cherin, A. H.

D. L. Franzen, M. Young, A. H. Cherin, E. D. Head, M. J. Hackert, K. W. Raine, and J. G. N. Baines, J. Lightwave Technol. 7, 896 (1989).
[CrossRef]

Chu, P. J.

Dragomir, N.

Epstein, M.

M. E. Marhic, P. S. Ho, and M. Epstein, Appl. Phys. Lett. 26, 574 (1975).
[CrossRef]

Farrell, P.

Franzen, D. L.

D. L. Franzen, M. Young, A. H. Cherin, E. D. Head, M. J. Hackert, K. W. Raine, and J. G. N. Baines, J. Lightwave Technol. 7, 896 (1989).
[CrossRef]

Hackert, M. J.

D. L. Franzen, M. Young, A. H. Cherin, E. D. Head, M. J. Hackert, K. W. Raine, and J. G. N. Baines, J. Lightwave Technol. 7, 896 (1989).
[CrossRef]

Head, E. D.

D. L. Franzen, M. Young, A. H. Cherin, E. D. Head, M. J. Hackert, K. W. Raine, and J. G. N. Baines, J. Lightwave Technol. 7, 896 (1989).
[CrossRef]

Ho, P. S.

M. E. Marhic, P. S. Ho, and M. Epstein, Appl. Phys. Lett. 26, 574 (1975).
[CrossRef]

Iga, K.

K. Iga, Y. Kokubun, and M. Oikawa, Microoptics: Distributed-Index, Microlens and Stacked Planar Optics (Academic, Tokyo, 1984), pp. 139–176.

Inniss, D.

Q. Zhong and D. Inniss, J. Lightwave Technol. 12, 1517 (1994).
[CrossRef]

Kalal, M.

Kokubun, Y.

K. Iga, Y. Kokubun, and M. Oikawa, Microoptics: Distributed-Index, Microlens and Stacked Planar Optics (Academic, Tokyo, 1984), pp. 139–176.

Marcuse, D.

Marhic, M. E.

M. E. Marhic, P. S. Ho, and M. Epstein, Appl. Phys. Lett. 26, 574 (1975).
[CrossRef]

McCaughan, L.

L. McCaughan and E. E. Bergmanne, J. Lightwave Technol. 1, 241 (1983).
[CrossRef]

Michna, M. L.

Nugent, K. A.

Oikawa, M.

K. Iga, Y. Kokubun, and M. Oikawa, Microoptics: Distributed-Index, Microlens and Stacked Planar Optics (Academic, Tokyo, 1984), pp. 139–176.

Paganin, D.

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, Opt. Commun. 17, 329 (2000).
[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, Opt. Lett. 23, 817 (1998).
[CrossRef]

Presby, H. M.

Putland, D. E.

K. W. Raine, J. G. N. Baines, and D. E. Putland, J. Lightwave Technol. 7, 1162 (1989).
[CrossRef]

Raine, K. W.

K. W. Raine, J. G. N. Baines, and D. E. Putland, J. Lightwave Technol. 7, 1162 (1989).
[CrossRef]

D. L. Franzen, M. Young, A. H. Cherin, E. D. Head, M. J. Hackert, K. W. Raine, and J. G. N. Baines, J. Lightwave Technol. 7, 896 (1989).
[CrossRef]

Roberts, A.

Saekeang, C.

Tatekura, K.

Thorn, K.

Young, M.

D. L. Franzen, M. Young, A. H. Cherin, E. D. Head, M. J. Hackert, K. W. Raine, and J. G. N. Baines, J. Lightwave Technol. 7, 896 (1989).
[CrossRef]

M. Young, Appl. Opt. 20, 3415 (1981).
[CrossRef]

Zhong, Q.

Q. Zhong and D. Inniss, J. Lightwave Technol. 12, 1517 (1994).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

M. E. Marhic, P. S. Ho, and M. Epstein, Appl. Phys. Lett. 26, 574 (1975).
[CrossRef]

J. Lightwave Technol. (4)

Q. Zhong and D. Inniss, J. Lightwave Technol. 12, 1517 (1994).
[CrossRef]

K. W. Raine, J. G. N. Baines, and D. E. Putland, J. Lightwave Technol. 7, 1162 (1989).
[CrossRef]

D. L. Franzen, M. Young, A. H. Cherin, E. D. Head, M. J. Hackert, K. W. Raine, and J. G. N. Baines, J. Lightwave Technol. 7, 896 (1989).
[CrossRef]

L. McCaughan and E. E. Bergmanne, J. Lightwave Technol. 1, 241 (1983).
[CrossRef]

Opt. Commun. (1)

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, Opt. Commun. 17, 329 (2000).
[CrossRef]

Opt. Lett. (2)

Other (2)

K. Iga, Y. Kokubun, and M. Oikawa, Microoptics: Distributed-Index, Microlens and Stacked Planar Optics (Academic, Tokyo, 1984), pp. 139–176.

Iatia, Ltd., www.iatia.com.au .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Phase image of Optical Fibre Technology Centre GF1 optical fiber obtained with an in-focus image and images at ±2.7µm defocus. Image dimensions are 183 µm×131 µm.

Fig. 2
Fig. 2

Refractive-index profile obtained from the phase image shown in Fig. 1. (a) Surface plot of the change in refractive index from the cladding index as a function of position. (b) Index change averaged along the section of GF1 fiber (solid curve) compared with the profile obtained from a commercial (York P102) profiler (dashed curve). Error bars show ±1 sample standard deviation to indicate the spread of data. (c) Comparison of the index obtained from the phase image (solid curve) with the topography of the fiber resulting from etching in buffered hydrofluoric acid, measured with an AFM (dashed curve).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

φx,z=4πλxRnr,zrr2-x2-1/2dr,
nr,z=-λ2π20Rφx,zxR2-x2-1/2dx.

Metrics