Abstract

We report on a new class of optical multidimensional Fourier-transform spectroscopy associated with a visible excitation–infrared emission configuration, in which the emitted field results from second-order optical nonlinearities. This configuration is demonstrated on a phase-matched sample of known nonlinear response by coherent measurement of the mid-infrared field emitted after a femtosecond visible double-pulse excitation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Lepetit and M. Joffre, Opt. Lett. 21, 564 (1996).
    [CrossRef] [PubMed]
  2. A. Tokmakoff, M. J. Lang, D. S. Larsen, G. R. Fleming, V. Chernyak, and S. Mukemel, Phys. Rev. Lett. 79, 2702 (1997).
    [CrossRef]
  3. O. Golonzka, M. Khalil, N. Dermidöven, and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001).
    [CrossRef] [PubMed]
  4. W. Zhao and J. C. Wright, Phys. Rev. Lett. 84, 1411 (2000).
    [CrossRef] [PubMed]
  5. M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 97, 8219 (2000).
    [CrossRef]
  6. P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 96, 2036 (1999).
    [CrossRef]
  7. J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).
  8. R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford U. Press, Oxford, 1997).
  9. L. Lepetit, G. Cheriaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  10. A. W. Albrecht Ferro, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, J. Chem. Phys. 111, 10934 (1999).
  11. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, J. Opt. Soc. Am. B 17, 1795 (2000).
    [CrossRef]
  12. A. Bonvalet, J. Nagle, V. Berger, A. Migus, J.-L. Martin, and M. Joffre, Phys. Rev. Lett. 76, 4392 (1996).
    [CrossRef] [PubMed]
  13. N. Belabas, J.-P. Likforman, L. Canioni, B. Bousquet, and M. Joffre, Opt. Lett. 26, 743 (2001).
    [CrossRef]
  14. K. Naganuma, K. Mogi, and H. Yanada, IEEE J. Quantum Electron. 25, 1225 (1989).
    [CrossRef]
  15. M.-L. Groot, M. H. Vos, I. Schlichting, F. van Mourik, M. Joffre, J.-C. Lanbry, and J.-L. Martin, Proc. Natl. Acad. Sci. USA 99, 1323 (2002).
    [CrossRef]

2002 (1)

M.-L. Groot, M. H. Vos, I. Schlichting, F. van Mourik, M. Joffre, J.-C. Lanbry, and J.-L. Martin, Proc. Natl. Acad. Sci. USA 99, 1323 (2002).
[CrossRef]

2001 (3)

N. Belabas, J.-P. Likforman, L. Canioni, B. Bousquet, and M. Joffre, Opt. Lett. 26, 743 (2001).
[CrossRef]

O. Golonzka, M. Khalil, N. Dermidöven, and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001).
[CrossRef] [PubMed]

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).

2000 (3)

W. Zhao and J. C. Wright, Phys. Rev. Lett. 84, 1411 (2000).
[CrossRef] [PubMed]

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 97, 8219 (2000).
[CrossRef]

C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, J. Opt. Soc. Am. B 17, 1795 (2000).
[CrossRef]

1999 (2)

P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 96, 2036 (1999).
[CrossRef]

A. W. Albrecht Ferro, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, J. Chem. Phys. 111, 10934 (1999).

1997 (1)

A. Tokmakoff, M. J. Lang, D. S. Larsen, G. R. Fleming, V. Chernyak, and S. Mukemel, Phys. Rev. Lett. 79, 2702 (1997).
[CrossRef]

1996 (2)

L. Lepetit and M. Joffre, Opt. Lett. 21, 564 (1996).
[CrossRef] [PubMed]

A. Bonvalet, J. Nagle, V. Berger, A. Migus, J.-L. Martin, and M. Joffre, Phys. Rev. Lett. 76, 4392 (1996).
[CrossRef] [PubMed]

1995 (1)

1989 (1)

K. Naganuma, K. Mogi, and H. Yanada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Albrecht Ferro, A. W.

A. W. Albrecht Ferro, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, J. Chem. Phys. 111, 10934 (1999).

Asplund, M. C.

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 97, 8219 (2000).
[CrossRef]

Belabas, N.

Berger, V.

A. Bonvalet, J. Nagle, V. Berger, A. Migus, J.-L. Martin, and M. Joffre, Phys. Rev. Lett. 76, 4392 (1996).
[CrossRef] [PubMed]

Bodenhausen, G.

R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford U. Press, Oxford, 1997).

Bonvalet, A.

A. Bonvalet, J. Nagle, V. Berger, A. Migus, J.-L. Martin, and M. Joffre, Phys. Rev. Lett. 76, 4392 (1996).
[CrossRef] [PubMed]

Bousquet, B.

Canioni, L.

Cheriaux, G.

Chernyak, V.

A. Tokmakoff, M. J. Lang, D. S. Larsen, G. R. Fleming, V. Chernyak, and S. Mukemel, Phys. Rev. Lett. 79, 2702 (1997).
[CrossRef]

DeGrado, W. F.

P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 96, 2036 (1999).
[CrossRef]

Dermidöven, N.

O. Golonzka, M. Khalil, N. Dermidöven, and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001).
[CrossRef] [PubMed]

Dorrer, C.

Ernst, R. R.

R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford U. Press, Oxford, 1997).

Ferro, A. A.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).

Fleming, G. R.

A. Tokmakoff, M. J. Lang, D. S. Larsen, G. R. Fleming, V. Chernyak, and S. Mukemel, Phys. Rev. Lett. 79, 2702 (1997).
[CrossRef]

Gallagher Faeder, S. M.

A. W. Albrecht Ferro, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, J. Chem. Phys. 111, 10934 (1999).

Golonzka, O.

O. Golonzka, M. Khalil, N. Dermidöven, and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001).
[CrossRef] [PubMed]

Groot, M.-L.

M.-L. Groot, M. H. Vos, I. Schlichting, F. van Mourik, M. Joffre, J.-C. Lanbry, and J.-L. Martin, Proc. Natl. Acad. Sci. USA 99, 1323 (2002).
[CrossRef]

Hamm, P.

P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 96, 2036 (1999).
[CrossRef]

Hochstrasser, R. M.

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 97, 8219 (2000).
[CrossRef]

P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 96, 2036 (1999).
[CrossRef]

Hybl, J. D.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).

A. W. Albrecht Ferro, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, J. Chem. Phys. 111, 10934 (1999).

Joffre, M.

Jonas, D. M.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).

A. W. Albrecht Ferro, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, J. Chem. Phys. 111, 10934 (1999).

Khalil, M.

O. Golonzka, M. Khalil, N. Dermidöven, and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001).
[CrossRef] [PubMed]

Lanbry, J.-C.

M.-L. Groot, M. H. Vos, I. Schlichting, F. van Mourik, M. Joffre, J.-C. Lanbry, and J.-L. Martin, Proc. Natl. Acad. Sci. USA 99, 1323 (2002).
[CrossRef]

Lang, M. J.

A. Tokmakoff, M. J. Lang, D. S. Larsen, G. R. Fleming, V. Chernyak, and S. Mukemel, Phys. Rev. Lett. 79, 2702 (1997).
[CrossRef]

Larsen, D. S.

A. Tokmakoff, M. J. Lang, D. S. Larsen, G. R. Fleming, V. Chernyak, and S. Mukemel, Phys. Rev. Lett. 79, 2702 (1997).
[CrossRef]

Lepetit, L.

Likforman, J.-P.

Lim, M.

P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 96, 2036 (1999).
[CrossRef]

Martin, J.-L.

M.-L. Groot, M. H. Vos, I. Schlichting, F. van Mourik, M. Joffre, J.-C. Lanbry, and J.-L. Martin, Proc. Natl. Acad. Sci. USA 99, 1323 (2002).
[CrossRef]

A. Bonvalet, J. Nagle, V. Berger, A. Migus, J.-L. Martin, and M. Joffre, Phys. Rev. Lett. 76, 4392 (1996).
[CrossRef] [PubMed]

Migus, A.

A. Bonvalet, J. Nagle, V. Berger, A. Migus, J.-L. Martin, and M. Joffre, Phys. Rev. Lett. 76, 4392 (1996).
[CrossRef] [PubMed]

Mogi, K.

K. Naganuma, K. Mogi, and H. Yanada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Mukemel, S.

A. Tokmakoff, M. J. Lang, D. S. Larsen, G. R. Fleming, V. Chernyak, and S. Mukemel, Phys. Rev. Lett. 79, 2702 (1997).
[CrossRef]

Naganuma, K.

K. Naganuma, K. Mogi, and H. Yanada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Nagle, J.

A. Bonvalet, J. Nagle, V. Berger, A. Migus, J.-L. Martin, and M. Joffre, Phys. Rev. Lett. 76, 4392 (1996).
[CrossRef] [PubMed]

Schlichting, I.

M.-L. Groot, M. H. Vos, I. Schlichting, F. van Mourik, M. Joffre, J.-C. Lanbry, and J.-L. Martin, Proc. Natl. Acad. Sci. USA 99, 1323 (2002).
[CrossRef]

Tokmakoff, A.

O. Golonzka, M. Khalil, N. Dermidöven, and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001).
[CrossRef] [PubMed]

A. Tokmakoff, M. J. Lang, D. S. Larsen, G. R. Fleming, V. Chernyak, and S. Mukemel, Phys. Rev. Lett. 79, 2702 (1997).
[CrossRef]

van Mourik, F.

M.-L. Groot, M. H. Vos, I. Schlichting, F. van Mourik, M. Joffre, J.-C. Lanbry, and J.-L. Martin, Proc. Natl. Acad. Sci. USA 99, 1323 (2002).
[CrossRef]

Vos, M. H.

M.-L. Groot, M. H. Vos, I. Schlichting, F. van Mourik, M. Joffre, J.-C. Lanbry, and J.-L. Martin, Proc. Natl. Acad. Sci. USA 99, 1323 (2002).
[CrossRef]

Wokaun, A.

R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford U. Press, Oxford, 1997).

Wright, J. C.

W. Zhao and J. C. Wright, Phys. Rev. Lett. 84, 1411 (2000).
[CrossRef] [PubMed]

Yanada, H.

K. Naganuma, K. Mogi, and H. Yanada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Zanni, M. T.

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 97, 8219 (2000).
[CrossRef]

Zhao, W.

W. Zhao and J. C. Wright, Phys. Rev. Lett. 84, 1411 (2000).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

K. Naganuma, K. Mogi, and H. Yanada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

J. Chem. Phys. (2)

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).

A. W. Albrecht Ferro, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, J. Chem. Phys. 111, 10934 (1999).

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Phys. Rev. Lett. (4)

A. Bonvalet, J. Nagle, V. Berger, A. Migus, J.-L. Martin, and M. Joffre, Phys. Rev. Lett. 76, 4392 (1996).
[CrossRef] [PubMed]

A. Tokmakoff, M. J. Lang, D. S. Larsen, G. R. Fleming, V. Chernyak, and S. Mukemel, Phys. Rev. Lett. 79, 2702 (1997).
[CrossRef]

O. Golonzka, M. Khalil, N. Dermidöven, and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001).
[CrossRef] [PubMed]

W. Zhao and J. C. Wright, Phys. Rev. Lett. 84, 1411 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (3)

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 97, 8219 (2000).
[CrossRef]

P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 96, 2036 (1999).
[CrossRef]

M.-L. Groot, M. H. Vos, I. Schlichting, F. van Mourik, M. Joffre, J.-C. Lanbry, and J.-L. Martin, Proc. Natl. Acad. Sci. USA 99, 1323 (2002).
[CrossRef]

Other (1)

R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford U. Press, Oxford, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental layout: Black rectangle, 500µm-thick AgGaS2 sample (ϕ=45°, θ=47°); white rectangle, 100µm-thick 11¯0 GaAs sample; PZT, piezoelectric transducer; GP, Glan polarizer; MCT, mercury cadmium telluride infrared detector; Qi, τi, see text. Inset, polarizations of the exciting visible pulse sequence and the emitted mid-infrared field.

Fig. 2
Fig. 2

(a) Ξ2ω2,ω1E1ω1E2ω2E3ω2+ω1 frequency dependency as determined by a two-dimensional Fourier transform of the experimental data (τ1 from -426.9 to 426.9 fs in δτ1=6.67 fs increments; τ2 from -285.4 to 285.4 in δτ2=4λdiode/c8.9 fs increments). (b) Theoretical results for Ξ2ω2,ω1E1ω1E2ω2E3ω2+ω1, assuming that E2 and E3 are 35-THz Gaussian centered around 375 THz. (c) Comparison between (solid line) the phase-matching slope calculated from the refractive indices of AgGaS2 and (crosses) the experimental maxima of map (a). These maxima are determined through a parabolic fit of cuts of the two-dimensional map for each value of ω2, which results in a resolution far better than δω1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Eemissionnω1= Ξnω2,,ωn+1Eω2Eωn+1δω1-i>1ωidω2dωn,
Ecrosstermnω1=Ξnω2,,ωn+1E2ω2expiω2τ2×E3ω3expiω3τ3δω1-i>1ωidω2dωn.
Ξ2ω2,ω3=expikoω1Lω124c2koω1×χ2-ω1;ω3,-ω2expiΔkL-1Δk,

Metrics