Abstract

We provide direct experimental evidence of waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering (SBS) in optical fiber. It is shown that the SBS spectral width and gain depend on the numerical aperture for both single-mode and multimode fibers, the functional dependencies of which are in good agreement with our model description of the phenomenon.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. L. Fabelinskii, Molecular Scattering of Light (Plenum, New York, 1968).
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995).
  3. V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 85, 1879 (2000).
    [CrossRef] [PubMed]
  4. S. Randoux and J. Zemmouri, Phys. Rev. Lett. 88, 029401-1 (2002).
  5. A. A. Fotiady, R. Kiyan, O. Deparis, P. Megret, and M. Blondel, Opt. Lett. 27, 83 (2002).
    [CrossRef]
  6. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 88, 029402-1 (2002).
    [CrossRef]
  7. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  8. A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, New York, 1997).
  9. R. G. Harrison, P. M. Ripley, and W. Lu, Phys. Rev. A 49, R24 (1994).
    [CrossRef]
  10. A. I. Erokhin, V. F. Efimkov, I. G. Zubarev, and S. I. Mikhailov, Quantum Electron. 29, 144 (1999).
    [CrossRef]
  11. V. S. Starunov and I. L. Fabelinskii, Sov. Phys. Usp. 12, 463 (1970).
    [CrossRef]
  12. R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
    [CrossRef] [PubMed]

2002 (3)

I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 88, 029402-1 (2002).
[CrossRef]

S. Randoux and J. Zemmouri, Phys. Rev. Lett. 88, 029401-1 (2002).

A. A. Fotiady, R. Kiyan, O. Deparis, P. Megret, and M. Blondel, Opt. Lett. 27, 83 (2002).
[CrossRef]

2000 (1)

V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 85, 1879 (2000).
[CrossRef] [PubMed]

1999 (1)

A. I. Erokhin, V. F. Efimkov, I. G. Zubarev, and S. I. Mikhailov, Quantum Electron. 29, 144 (1999).
[CrossRef]

1994 (1)

R. G. Harrison, P. M. Ripley, and W. Lu, Phys. Rev. A 49, R24 (1994).
[CrossRef]

1990 (1)

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

1970 (1)

V. S. Starunov and I. L. Fabelinskii, Sov. Phys. Usp. 12, 463 (1970).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995).

Blondel, M.

Boyd, R. W.

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Deparis, O.

Efimkov, V. F.

A. I. Erokhin, V. F. Efimkov, I. G. Zubarev, and S. I. Mikhailov, Quantum Electron. 29, 144 (1999).
[CrossRef]

Erokhin, A. I.

A. I. Erokhin, V. F. Efimkov, I. G. Zubarev, and S. I. Mikhailov, Quantum Electron. 29, 144 (1999).
[CrossRef]

Fabelinskii, I. L.

V. S. Starunov and I. L. Fabelinskii, Sov. Phys. Usp. 12, 463 (1970).
[CrossRef]

I. L. Fabelinskii, Molecular Scattering of Light (Plenum, New York, 1968).
[CrossRef]

Fotiady, A. A.

Harrison, R. G.

I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 88, 029402-1 (2002).
[CrossRef]

V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 85, 1879 (2000).
[CrossRef] [PubMed]

R. G. Harrison, P. M. Ripley, and W. Lu, Phys. Rev. A 49, R24 (1994).
[CrossRef]

Kiyan, R.

Kovalev, I.

I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 88, 029402-1 (2002).
[CrossRef]

Kovalev, V. I.

V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 85, 1879 (2000).
[CrossRef] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Lu, W.

R. G. Harrison, P. M. Ripley, and W. Lu, Phys. Rev. A 49, R24 (1994).
[CrossRef]

Megret, P.

Mikhailov, S. I.

A. I. Erokhin, V. F. Efimkov, I. G. Zubarev, and S. I. Mikhailov, Quantum Electron. 29, 144 (1999).
[CrossRef]

Narum, P.

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Randoux, S.

S. Randoux and J. Zemmouri, Phys. Rev. Lett. 88, 029401-1 (2002).

Ripley, P. M.

R. G. Harrison, P. M. Ripley, and W. Lu, Phys. Rev. A 49, R24 (1994).
[CrossRef]

Rzazewski, K.

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Starunov, V. S.

V. S. Starunov and I. L. Fabelinskii, Sov. Phys. Usp. 12, 463 (1970).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, New York, 1997).

Zemmouri, J.

S. Randoux and J. Zemmouri, Phys. Rev. Lett. 88, 029401-1 (2002).

Zubarev, I. G.

A. I. Erokhin, V. F. Efimkov, I. G. Zubarev, and S. I. Mikhailov, Quantum Electron. 29, 144 (1999).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (2)

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

R. G. Harrison, P. M. Ripley, and W. Lu, Phys. Rev. A 49, R24 (1994).
[CrossRef]

Phys. Rev. Lett. (3)

V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 85, 1879 (2000).
[CrossRef] [PubMed]

S. Randoux and J. Zemmouri, Phys. Rev. Lett. 88, 029401-1 (2002).

I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 88, 029402-1 (2002).
[CrossRef]

Quantum Electron. (1)

A. I. Erokhin, V. F. Efimkov, I. G. Zubarev, and S. I. Mikhailov, Quantum Electron. 29, 144 (1999).
[CrossRef]

Sov. Phys. Usp. (1)

V. S. Starunov and I. L. Fabelinskii, Sov. Phys. Usp. 12, 463 (1970).
[CrossRef]

Other (4)

I. L. Fabelinskii, Molecular Scattering of Light (Plenum, New York, 1968).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Line shape of the Brillouin gain spectrum in optical fiber for several NA values: rel. un., relative units.

Fig. 2
Fig. 2

Dependence of Brillouin linewidth Γ on NA.

Tables (1)

Tables Icon

Table 1 Characteristics of the Fibers Tested

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θc=sin-11-ncl2nco21/2= sin-1NAnco,
γif=1πF0-FcFcF0pFBγhf,FBdFB,
γif= 1πF0-Fctan-1F0-fΓ0/2-tan-1Fc-fΓ0/2
-γifdf=1.
gif= g0γi/γh=g0Γ0/2F0-Fc×tan-1F0-fΓ0/2-tan-1Fc-fΓ0/2,
ΓΓ02+F02NA44nco41/2.

Metrics