Abstract

Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering–absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r2 values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. S. Khalil, Clin. Chem. 45, 165 (1999).
    [PubMed]
  2. R. J. McNichols and G. L. Cote, J. Biomed. Opt. 5, 5 (2000).
    [CrossRef] [PubMed]
  3. G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, Nature 347, 301 (1990).
    [CrossRef] [PubMed]
  4. M. G. Shim, L. M. W. M. Song, N. E. Marcon, and B. C. Wilson, Photochem. Photobiol. 72, 146 (2000).
    [PubMed]
  5. H. P. Buschman, G. Deinum, J. T. Motz, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. Bruschke, and M. S. Feld, Cardiovasc. Pathol. 10, 69 (2001).
    [CrossRef] [PubMed]
  6. K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, J. Raman. Spectrosc. 33, 552 (2002).
    [CrossRef]
  7. A. J. Berger, T.-W. Koo, I. Itzkan, G. L. Horowitz, and M. S. Feld, Appl. Opt. 38, 2916 (1999).
    [CrossRef]
  8. Although hemoglobin concentration and hct are two different analytes, they are highly correlated, as observed in our study r2=0.97.
  9. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
    [CrossRef] [PubMed]
  10. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, J. Biomed. Opt. 4, 36 (1999).
    [CrossRef] [PubMed]
  11. D. M. Haaland and E. V. Thomas, Anal. Chem. 60, 1193 (1988).
    [CrossRef]
  12. H. Martens and T. Naes, Multivariate Calibration (Wiley, New York, 1989).
  13. J. B. Henry, Clinical Diagnosis and Management by Laboratory Methods (Saunders, Philadelphia, Pa., 1996).
  14. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell (Garland, New York, 1989).

2002 (1)

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, J. Raman. Spectrosc. 33, 552 (2002).
[CrossRef]

2001 (1)

H. P. Buschman, G. Deinum, J. T. Motz, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. Bruschke, and M. S. Feld, Cardiovasc. Pathol. 10, 69 (2001).
[CrossRef] [PubMed]

2000 (2)

R. J. McNichols and G. L. Cote, J. Biomed. Opt. 5, 5 (2000).
[CrossRef] [PubMed]

M. G. Shim, L. M. W. M. Song, N. E. Marcon, and B. C. Wilson, Photochem. Photobiol. 72, 146 (2000).
[PubMed]

1999 (3)

O. S. Khalil, Clin. Chem. 45, 165 (1999).
[PubMed]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, J. Biomed. Opt. 4, 36 (1999).
[CrossRef] [PubMed]

A. J. Berger, T.-W. Koo, I. Itzkan, G. L. Horowitz, and M. S. Feld, Appl. Opt. 38, 2916 (1999).
[CrossRef]

1995 (1)

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

1990 (1)

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, Nature 347, 301 (1990).
[CrossRef] [PubMed]

1988 (1)

D. M. Haaland and E. V. Thomas, Anal. Chem. 60, 1193 (1988).
[CrossRef]

Alberts, B.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell (Garland, New York, 1989).

Arndt-Jovin, D. J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, Nature 347, 301 (1990).
[CrossRef] [PubMed]

Berger, A. J.

Bruschke, A. V.

H. P. Buschman, G. Deinum, J. T. Motz, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. Bruschke, and M. S. Feld, Cardiovasc. Pathol. 10, 69 (2001).
[CrossRef] [PubMed]

Buschman, H. P.

H. P. Buschman, G. Deinum, J. T. Motz, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. Bruschke, and M. S. Feld, Cardiovasc. Pathol. 10, 69 (2001).
[CrossRef] [PubMed]

Cote, G. L.

R. J. McNichols and G. L. Cote, J. Biomed. Opt. 5, 5 (2000).
[CrossRef] [PubMed]

Crowe, J.

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, J. Raman. Spectrosc. 33, 552 (2002).
[CrossRef]

Dasari, R. R.

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, J. Raman. Spectrosc. 33, 552 (2002).
[CrossRef]

de Mul, F. F. M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, Nature 347, 301 (1990).
[CrossRef] [PubMed]

Deinum, G.

H. P. Buschman, G. Deinum, J. T. Motz, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. Bruschke, and M. S. Feld, Cardiovasc. Pathol. 10, 69 (2001).
[CrossRef] [PubMed]

Dörschel, K.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, J. Biomed. Opt. 4, 36 (1999).
[CrossRef] [PubMed]

Feld, M. S.

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, J. Raman. Spectrosc. 33, 552 (2002).
[CrossRef]

H. P. Buschman, G. Deinum, J. T. Motz, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. Bruschke, and M. S. Feld, Cardiovasc. Pathol. 10, 69 (2001).
[CrossRef] [PubMed]

A. J. Berger, T.-W. Koo, I. Itzkan, G. L. Horowitz, and M. S. Feld, Appl. Opt. 38, 2916 (1999).
[CrossRef]

Fitzmaurice, M.

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, J. Raman. Spectrosc. 33, 552 (2002).
[CrossRef]

H. P. Buschman, G. Deinum, J. T. Motz, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. Bruschke, and M. S. Feld, Cardiovasc. Pathol. 10, 69 (2001).
[CrossRef] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, J. Biomed. Opt. 4, 36 (1999).
[CrossRef] [PubMed]

Greve, J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, Nature 347, 301 (1990).
[CrossRef] [PubMed]

Haaland, D. M.

D. M. Haaland and E. V. Thomas, Anal. Chem. 60, 1193 (1988).
[CrossRef]

Hahn, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, J. Biomed. Opt. 4, 36 (1999).
[CrossRef] [PubMed]

Haka, A. S.

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, J. Raman. Spectrosc. 33, 552 (2002).
[CrossRef]

Henry, J. B.

J. B. Henry, Clinical Diagnosis and Management by Laboratory Methods (Saunders, Philadelphia, Pa., 1996).

Horowitz, G. L.

Itzkan, I.

Jacques, S. L.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

Johnson, A.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell (Garland, New York, 1989).

Jovin, T. M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, Nature 347, 301 (1990).
[CrossRef] [PubMed]

Khalil, O. S.

O. S. Khalil, Clin. Chem. 45, 165 (1999).
[PubMed]

Koo, T.-W.

Kramer, J. R.

H. P. Buschman, G. Deinum, J. T. Motz, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. Bruschke, and M. S. Feld, Cardiovasc. Pathol. 10, 69 (2001).
[CrossRef] [PubMed]

Lewis, J.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell (Garland, New York, 1989).

Marcon, N. E.

M. G. Shim, L. M. W. M. Song, N. E. Marcon, and B. C. Wilson, Photochem. Photobiol. 72, 146 (2000).
[PubMed]

Martens, H.

H. Martens and T. Naes, Multivariate Calibration (Wiley, New York, 1989).

McNichols, R. J.

R. J. McNichols and G. L. Cote, J. Biomed. Opt. 5, 5 (2000).
[CrossRef] [PubMed]

Motz, J. T.

H. P. Buschman, G. Deinum, J. T. Motz, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. Bruschke, and M. S. Feld, Cardiovasc. Pathol. 10, 69 (2001).
[CrossRef] [PubMed]

Müller, G.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, J. Biomed. Opt. 4, 36 (1999).
[CrossRef] [PubMed]

Myles, J.

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, J. Raman. Spectrosc. 33, 552 (2002).
[CrossRef]

Naes, T.

H. Martens and T. Naes, Multivariate Calibration (Wiley, New York, 1989).

Otto, C.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, Nature 347, 301 (1990).
[CrossRef] [PubMed]

Puppels, G. J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, Nature 347, 301 (1990).
[CrossRef] [PubMed]

Raff, M.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell (Garland, New York, 1989).

Robert-Nicoud, M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, Nature 347, 301 (1990).
[CrossRef] [PubMed]

Roberts, K.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell (Garland, New York, 1989).

Roggan, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, J. Biomed. Opt. 4, 36 (1999).
[CrossRef] [PubMed]

Shafer-Peltier, K. E.

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, J. Raman. Spectrosc. 33, 552 (2002).
[CrossRef]

Shim, M. G.

M. G. Shim, L. M. W. M. Song, N. E. Marcon, and B. C. Wilson, Photochem. Photobiol. 72, 146 (2000).
[PubMed]

Song, L. M. W. M.

M. G. Shim, L. M. W. M. Song, N. E. Marcon, and B. C. Wilson, Photochem. Photobiol. 72, 146 (2000).
[PubMed]

Thomas, E. V.

D. M. Haaland and E. V. Thomas, Anal. Chem. 60, 1193 (1988).
[CrossRef]

van der Laarse, A.

H. P. Buschman, G. Deinum, J. T. Motz, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. Bruschke, and M. S. Feld, Cardiovasc. Pathol. 10, 69 (2001).
[CrossRef] [PubMed]

Walter, P.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell (Garland, New York, 1989).

Wang, L.-H.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

Wilson, B. C.

M. G. Shim, L. M. W. M. Song, N. E. Marcon, and B. C. Wilson, Photochem. Photobiol. 72, 146 (2000).
[PubMed]

Zheng, L.-Q.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

Anal. Chem. (1)

D. M. Haaland and E. V. Thomas, Anal. Chem. 60, 1193 (1988).
[CrossRef]

Appl. Opt. (1)

Cardiovasc. Pathol. (1)

H. P. Buschman, G. Deinum, J. T. Motz, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. Bruschke, and M. S. Feld, Cardiovasc. Pathol. 10, 69 (2001).
[CrossRef] [PubMed]

Clin. Chem. (1)

O. S. Khalil, Clin. Chem. 45, 165 (1999).
[PubMed]

Comput. Methods Programs Biomed. (1)

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, J. Biomed. Opt. 4, 36 (1999).
[CrossRef] [PubMed]

R. J. McNichols and G. L. Cote, J. Biomed. Opt. 5, 5 (2000).
[CrossRef] [PubMed]

J. Raman. Spectrosc. (1)

K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, J. Raman. Spectrosc. 33, 552 (2002).
[CrossRef]

Nature (1)

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, Nature 347, 301 (1990).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

M. G. Shim, L. M. W. M. Song, N. E. Marcon, and B. C. Wilson, Photochem. Photobiol. 72, 146 (2000).
[PubMed]

Other (4)

Although hemoglobin concentration and hct are two different analytes, they are highly correlated, as observed in our study r2=0.97.

H. Martens and T. Naes, Multivariate Calibration (Wiley, New York, 1989).

J. B. Henry, Clinical Diagnosis and Management by Laboratory Methods (Saunders, Philadelphia, Pa., 1996).

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell (Garland, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the Raman instrument. A beam of 830-nm light from a diode laser (L; PI-ECL-830-500, Process Instruments, Salt Lake City, Utah) is passed through a bandpass filter (BPF; Kaiser Optical Systems, Ann Arbor, Mich.), directed toward a paraboloidal mirror (Perkin Elmer, Fremont, Calif.) by means of a small prism, and focused onto a quartz cuvette containing a whole blood sample (WB). Raman-scattered light emitted from the whole blood surface (1mm2 area) is collected by the mirror, passed through a notch filter (NF; Kaiser Optical Systems) to reject backreflected 830-nm light, and coupled into an optical fiber bundle (OFB; Romack Fiber Optics, Williamsburg, Va.), which converts the circular shape of the collected light to rectangular to match the entrance slit of the spectrograph (S, Holospec f/1.8i; Kaiser Optical Systems). The spectra are collected by a cooled CCD array detector (C, 1152×770 pixels, Roper Scientific, Trenton, N.J.) and binned along the vertical direction, resulting in a 1152-pixel spectrum.

Fig. 2
Fig. 2

Raman signals from whole blood at collection half-angles 20°, 35°, and 90°, obtained from Monte Carlo simulations: For hct, 45%; μa=1.25 mm-1, μs=253 mm-1, and g=0.991 at the 830-nm excitation wavelength and μa=1.46 mm-1, μs=222 mm-1, and g=0.989 (Ref. 10) at 920 nm, a representative Raman emission wavelength. The resulting Raman intensities at the collection radii matching the etendue of the spectrograph–CCD detector are indicated. The largest signal is obtained for 35° half-angle and a 0.55-mm radius.

Fig. 3
Fig. 3

Raman spectra of 31 whole blood samples after polynomial background subtraction.

Fig. 4
Fig. 4

Prediction plot (top) for glucose and (bottom) the corresponding PLS calibration spectrum. Good agreement is obtained between the latter (curve B, offset) and the Raman spectrum of pure glucose in water (curve A).

Tables (1)

Tables Icon

Table 1 PLS Predictions

Metrics