Abstract

Gain-guided diode lasers usually have emission wavelengths determined by the manufacturing process, with typically 0.5–1-nm bandwidth. Furthermore, their beam quality is rather poor. We show that external cavities allow for tunable narrow-bandwidth operation of gain-guided diode lasers. At the same time the beam quality is drastically improved; almost diffraction-limited light of more than 200 mW has been achieved over the whole tuning range from 910 to 942 nm with narrow bandwidth.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Morris, J. C. Connolly, R. U. Martinelli, J. H. Abeles, and A. L. Cook, IEEE Photon. Technol. Lett. 7, 455 (1995).
    [CrossRef]
  2. V. Raab and R. Menzel, Opt. Lett. 27, 167 (2002).
    [CrossRef]
  3. J.-M. Verdiell and R. Frey, IEEE J. Quantum Electron. 26, 270 (1990).
    [CrossRef]
  4. R. M. R. Pillai and E. M. Garmire, J. Quantum Electron. 32, 996 (1996).
    [CrossRef]
  5. C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Diens, and R. D. Burnham, Appl. Phys. Lett. 50, 1465 (1987).
    [CrossRef]
  6. A. K. Goyal, P. Gavrilovic, and H. Po, Appl. Phys. Lett. 71, 1296 (1997).
    [CrossRef]
  7. M. Løbel, P. M. Petersen, and P. M. Johansen, Opt. Lett. 23, 825 (1998).
    [CrossRef]
  8. M. Løbel, P. M. Petersen, and P. M. Johansen, J. Opt. Soc. Am. B 15, 2000 (1998).
    [CrossRef]
  9. M. Løbel, P. M. Petersen, and P. M. Johansen, J. Opt. Soc. Am. B 16, 219 (1999).
    [CrossRef]

2002 (1)

1999 (1)

1998 (2)

1997 (1)

A. K. Goyal, P. Gavrilovic, and H. Po, Appl. Phys. Lett. 71, 1296 (1997).
[CrossRef]

1996 (1)

R. M. R. Pillai and E. M. Garmire, J. Quantum Electron. 32, 996 (1996).
[CrossRef]

1995 (1)

N. A. Morris, J. C. Connolly, R. U. Martinelli, J. H. Abeles, and A. L. Cook, IEEE Photon. Technol. Lett. 7, 455 (1995).
[CrossRef]

1990 (1)

J.-M. Verdiell and R. Frey, IEEE J. Quantum Electron. 26, 270 (1990).
[CrossRef]

1987 (1)

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Diens, and R. D. Burnham, Appl. Phys. Lett. 50, 1465 (1987).
[CrossRef]

Abeles, J. H.

N. A. Morris, J. C. Connolly, R. U. Martinelli, J. H. Abeles, and A. L. Cook, IEEE Photon. Technol. Lett. 7, 455 (1995).
[CrossRef]

Burnham, R. D.

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Diens, and R. D. Burnham, Appl. Phys. Lett. 50, 1465 (1987).
[CrossRef]

Chang-Hasnain, C.

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Diens, and R. D. Burnham, Appl. Phys. Lett. 50, 1465 (1987).
[CrossRef]

Connolly, J. C.

N. A. Morris, J. C. Connolly, R. U. Martinelli, J. H. Abeles, and A. L. Cook, IEEE Photon. Technol. Lett. 7, 455 (1995).
[CrossRef]

Cook, A. L.

N. A. Morris, J. C. Connolly, R. U. Martinelli, J. H. Abeles, and A. L. Cook, IEEE Photon. Technol. Lett. 7, 455 (1995).
[CrossRef]

Diens, A.

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Diens, and R. D. Burnham, Appl. Phys. Lett. 50, 1465 (1987).
[CrossRef]

Frey, R.

J.-M. Verdiell and R. Frey, IEEE J. Quantum Electron. 26, 270 (1990).
[CrossRef]

Garmire, E. M.

R. M. R. Pillai and E. M. Garmire, J. Quantum Electron. 32, 996 (1996).
[CrossRef]

Gavrilovic, P.

A. K. Goyal, P. Gavrilovic, and H. Po, Appl. Phys. Lett. 71, 1296 (1997).
[CrossRef]

Goyal, A. K.

A. K. Goyal, P. Gavrilovic, and H. Po, Appl. Phys. Lett. 71, 1296 (1997).
[CrossRef]

Johansen, P. M.

Løbel, M.

Martinelli, R. U.

N. A. Morris, J. C. Connolly, R. U. Martinelli, J. H. Abeles, and A. L. Cook, IEEE Photon. Technol. Lett. 7, 455 (1995).
[CrossRef]

Menzel, R.

Morris, N. A.

N. A. Morris, J. C. Connolly, R. U. Martinelli, J. H. Abeles, and A. L. Cook, IEEE Photon. Technol. Lett. 7, 455 (1995).
[CrossRef]

Petersen, P. M.

Pillai, R. M. R.

R. M. R. Pillai and E. M. Garmire, J. Quantum Electron. 32, 996 (1996).
[CrossRef]

Po, H.

A. K. Goyal, P. Gavrilovic, and H. Po, Appl. Phys. Lett. 71, 1296 (1997).
[CrossRef]

Raab, V.

Scifres, D. R.

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Diens, and R. D. Burnham, Appl. Phys. Lett. 50, 1465 (1987).
[CrossRef]

Verdiell, J.-M.

J.-M. Verdiell and R. Frey, IEEE J. Quantum Electron. 26, 270 (1990).
[CrossRef]

Welch, D. F.

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Diens, and R. D. Burnham, Appl. Phys. Lett. 50, 1465 (1987).
[CrossRef]

Whinnery, J. R.

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Diens, and R. D. Burnham, Appl. Phys. Lett. 50, 1465 (1987).
[CrossRef]

Appl. Phys. Lett. (2)

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Diens, and R. D. Burnham, Appl. Phys. Lett. 50, 1465 (1987).
[CrossRef]

A. K. Goyal, P. Gavrilovic, and H. Po, Appl. Phys. Lett. 71, 1296 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

J.-M. Verdiell and R. Frey, IEEE J. Quantum Electron. 26, 270 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. A. Morris, J. C. Connolly, R. U. Martinelli, J. H. Abeles, and A. L. Cook, IEEE Photon. Technol. Lett. 7, 455 (1995).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Quantum Electron. (1)

R. M. R. Pillai and E. M. Garmire, J. Quantum Electron. 32, 996 (1996).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup along the slow axis of the tunable external resonator: opt., optional; l/mm, lines per millimeter.

Fig. 2
Fig. 2

The fluorescence of the antireflection-coated diode without external feedback yields a FWHM of 22 nm for an injection current of 2 A.

Fig. 3
Fig. 3

Spectra collected with a scanning Fabry–Perot interferometer with a free spectral range (FSR) of 30 GHz and with different etalons applied inside the resonator. Upper left, 2 mm, R=45%. Upper right, d=2 mm, R=45% and d=6.3 mm, R=45%. Lower left, d=2 mm, R=85%. Lower right, d=0.3 mm, R=95%.

Fig. 4
Fig. 4

Spectra for 1.5-, 2.0-, and 2.5-A injection currents. Extracted powers were 235, 304, and 383 mW, respectively.

Fig. 5
Fig. 5

Laser output power for 2-A injection current as a function of grating tilt. The curves correspond to the etalon configurations shown in Fig. 3.

Metrics