Abstract

The refractive-index modulation of chemical composition gratings in fluorine–germanium-doped silica fibers as a function of thermal treatment during manufacturing has been studied. The final grating strength was found to depend strongly on an intermediate annealing step, with an optimum temperature near 600–700 °C, before development at a fixed temperature of 1000 °C. Low–temperature treatment, aimed at removing any remaining hydrogen from the fiber, performed at 100 °C for 20 h before the annealing step, also significantly increased the final refractive-index modulation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fokine, B. F. Sahlgren, and R. Stubbe, in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 58–60.
  2. M. Fokine, J. Opt. Soc. Am. B 19, 1759 (2002).
    [CrossRef]
  3. M. Fokine, Rev. Sci. Instrum. 72, 3458 (2001).
    [CrossRef]
  4. M. Fokine, Opt. Lett. 27, 1016 (2002).
    [CrossRef]
  5. J. Stone, J. Lightwave Technol. LT-5, 712 (1987).
    [CrossRef]
  6. R. H. Doremus, J. Mater. Res. 10, 2379 (1995).
    [CrossRef]
  7. M. Tomozawa, J. Am. Ceram. Soc. 68, C-251 (1985).
    [CrossRef]
  8. P. B. McGinnis and J. E. Shelby, J. Non-Cryst. Solids 179, 185 (1994).
    [CrossRef]

2002 (2)

2001 (1)

M. Fokine, Rev. Sci. Instrum. 72, 3458 (2001).
[CrossRef]

1995 (1)

R. H. Doremus, J. Mater. Res. 10, 2379 (1995).
[CrossRef]

1994 (1)

P. B. McGinnis and J. E. Shelby, J. Non-Cryst. Solids 179, 185 (1994).
[CrossRef]

1987 (1)

J. Stone, J. Lightwave Technol. LT-5, 712 (1987).
[CrossRef]

1985 (1)

M. Tomozawa, J. Am. Ceram. Soc. 68, C-251 (1985).
[CrossRef]

Doremus, R. H.

R. H. Doremus, J. Mater. Res. 10, 2379 (1995).
[CrossRef]

Fokine, M.

M. Fokine, J. Opt. Soc. Am. B 19, 1759 (2002).
[CrossRef]

M. Fokine, Opt. Lett. 27, 1016 (2002).
[CrossRef]

M. Fokine, Rev. Sci. Instrum. 72, 3458 (2001).
[CrossRef]

M. Fokine, B. F. Sahlgren, and R. Stubbe, in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 58–60.

McGinnis, P. B.

P. B. McGinnis and J. E. Shelby, J. Non-Cryst. Solids 179, 185 (1994).
[CrossRef]

Sahlgren, B. F.

M. Fokine, B. F. Sahlgren, and R. Stubbe, in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 58–60.

Shelby, J. E.

P. B. McGinnis and J. E. Shelby, J. Non-Cryst. Solids 179, 185 (1994).
[CrossRef]

Stone, J.

J. Stone, J. Lightwave Technol. LT-5, 712 (1987).
[CrossRef]

Stubbe, R.

M. Fokine, B. F. Sahlgren, and R. Stubbe, in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 58–60.

Tomozawa, M.

M. Tomozawa, J. Am. Ceram. Soc. 68, C-251 (1985).
[CrossRef]

J. Am. Ceram. Soc. (1)

M. Tomozawa, J. Am. Ceram. Soc. 68, C-251 (1985).
[CrossRef]

J. Lightwave Technol. (1)

J. Stone, J. Lightwave Technol. LT-5, 712 (1987).
[CrossRef]

J. Mater. Res. (1)

R. H. Doremus, J. Mater. Res. 10, 2379 (1995).
[CrossRef]

J. Non-Cryst. Solids (1)

P. B. McGinnis and J. E. Shelby, J. Non-Cryst. Solids 179, 185 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

M. Fokine, Rev. Sci. Instrum. 72, 3458 (2001).
[CrossRef]

Other (1)

M. Fokine, B. F. Sahlgren, and R. Stubbe, in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 58–60.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Final refractive-index modulation of developed CCGs as a function of annealing time at annealing temperatures of 600, 700, and 800 °C.

Fig. 2
Fig. 2

Growth of reflectivity during the development at 1000 °C for a fiber without hydrogen (top) and for partially hydrogen loaded fiber (lower).

Fig. 3
Fig. 3

Final refractive-index modulation of CCG’s annealed for 24 min at different annealing temperatures before development (the curve was drawn to guide the eye).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2X-OHX-O-X+H2O,
X-OH+F-XX-O-X+HF,
X-F+H2OX-OH+HF,

Metrics