Abstract

We describe an extremely versatile method that permits the accurate generation of arbitrary complex vector wave fields. We implement the scheme using a reconfigurable binary optical element that also permits additional fine tuning, such as aberration correction, to be performed. As examples we demonstrate the generation of both azimuthally and radially polarized beams.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. A. Neil, M. J. Booth, and T. Wilson, Opt. Lett. 23, 1849 (1998).
    [CrossRef]
  2. M. A. A. Neil, T. Wilson, and R. Juškaitis, J. Microsc. 197, 219 (2000).
    [CrossRef] [PubMed]
  3. G. A. Swartzlander, Opt. Lett. 26, 497 (2001).
    [CrossRef]
  4. B. Sick, B. Hecht, and L. Novotny, Phy. Rev. Lett. 85, 4482 (2000).
    [CrossRef]
  5. L. Novotny, M. R. Beverluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
    [CrossRef] [PubMed]
  6. S. C. Tidwell, D. H. Ford, and W. D. Kimura, Appl. Opt. 29, 2234 (1990).
    [CrossRef] [PubMed]
  7. S. C. Tidwell, G. H. Kim, and W. D. Kimura, Appl. Opt. 32, 5222 (1993).
    [CrossRef] [PubMed]
  8. K. S. Youngworth and T. G. Brown, Proc. SPIE 3919, 75 (2000).
    [CrossRef]
  9. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 27, 285 (2002).
    [CrossRef]
  10. W. H. Lee, in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1978), Vol. 16, Chap. 3.
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  12. S. T. Warr and R. J. Mears, Electron. Lett. 31, 714 (1995).
    [CrossRef]
  13. M. A. A. Neil, R. Juškaitis, T. Wilson, T. Tanaka, and S. Kawata, Appl. Opt. 41, 1374 (2002).
    [CrossRef] [PubMed]

2002 (2)

2001 (2)

G. A. Swartzlander, Opt. Lett. 26, 497 (2001).
[CrossRef]

L. Novotny, M. R. Beverluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

2000 (3)

K. S. Youngworth and T. G. Brown, Proc. SPIE 3919, 75 (2000).
[CrossRef]

B. Sick, B. Hecht, and L. Novotny, Phy. Rev. Lett. 85, 4482 (2000).
[CrossRef]

M. A. A. Neil, T. Wilson, and R. Juškaitis, J. Microsc. 197, 219 (2000).
[CrossRef] [PubMed]

1998 (1)

1995 (1)

S. T. Warr and R. J. Mears, Electron. Lett. 31, 714 (1995).
[CrossRef]

1993 (1)

1990 (1)

Beverluis, M. R.

L. Novotny, M. R. Beverluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Biener, G.

Bomzon, Z.

Booth, M. J.

Brown, T. G.

L. Novotny, M. R. Beverluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, Proc. SPIE 3919, 75 (2000).
[CrossRef]

Ford, D. H.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Hasman, E.

Hecht, B.

B. Sick, B. Hecht, and L. Novotny, Phy. Rev. Lett. 85, 4482 (2000).
[CrossRef]

Juškaitis, R.

Kawata, S.

Kim, G. H.

Kimura, W. D.

Kleiner, V.

Lee, W. H.

W. H. Lee, in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1978), Vol. 16, Chap. 3.

Mears, R. J.

S. T. Warr and R. J. Mears, Electron. Lett. 31, 714 (1995).
[CrossRef]

Neil, M. A. A.

Novotny, L.

L. Novotny, M. R. Beverluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

B. Sick, B. Hecht, and L. Novotny, Phy. Rev. Lett. 85, 4482 (2000).
[CrossRef]

Sick, B.

B. Sick, B. Hecht, and L. Novotny, Phy. Rev. Lett. 85, 4482 (2000).
[CrossRef]

Swartzlander, G. A.

Tanaka, T.

Tidwell, S. C.

Warr, S. T.

S. T. Warr and R. J. Mears, Electron. Lett. 31, 714 (1995).
[CrossRef]

Wilson, T.

Youngworth, K. S.

L. Novotny, M. R. Beverluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, Proc. SPIE 3919, 75 (2000).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

S. T. Warr and R. J. Mears, Electron. Lett. 31, 714 (1995).
[CrossRef]

J. Microsc. (1)

M. A. A. Neil, T. Wilson, and R. Juškaitis, J. Microsc. 197, 219 (2000).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phy. Rev. Lett. (1)

B. Sick, B. Hecht, and L. Novotny, Phy. Rev. Lett. 85, 4482 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

L. Novotny, M. R. Beverluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

K. S. Youngworth and T. G. Brown, Proc. SPIE 3919, 75 (2000).
[CrossRef]

Other (2)

W. H. Lee, in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1978), Vol. 16, Chap. 3.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Mapping of a normalized complex field within a unit circle into the required +1 or -1 modulation of the binary optical element.

Fig. 2
Fig. 2

Schematic diagram of the optical system.

Fig. 3
Fig. 3

Intensities in the focal plane comparing theory, (a) and (c), with experiment, (b) and (d), for both azimuthally, (a) and (b), and radially, (c) and (d), polarized illumination. The top row shows the full intensity, whereas the rows below reveal the vectorial nature of the field by showing the intensity passed by an analyzer oriented as indicated by the arrows.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E=arbr.
fr=arexpjτa·r+brexpjτb·r,
E0=expjτ·rexp-jτ·r,
E1=Aρ-τa-τ+Bρ-τb-τAρ-τa-τ+Bρ-τb+τ.
E-fvsin ϕpfvcos ϕp0,
fv=01tJ1vtdt,
Efvcos ϕpfvsin ϕp0,

Metrics