Abstract

We demonstrate novel modulation-free frequency locking of a diode laser, utilizing a simple Sagnac interferometer to create an error signal from saturated-absorption spectroscopy. The interference condition at the output of the Sagnac is strongly affected by the sharp dispersion feature near an atomic resonance. Slight misalignment of the interferometer and subsequent spatially selective, or tilt, detection allows this phase change to be converted into an error signal. Tilt locking has significant advantages over previously described methods, as it requires only a small number of low-cost optical components and a detector. In addition, the system has the potential to be constructed as a plug-and-play fiber-coupled monolithic device to provide submegahertz stability for lasers in the commercial market.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
    [CrossRef]
  2. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, Appl. Opt. 37, 3295 (1998).
    [CrossRef]
  3. C. I. Sukenik, H. C. Busch, and M. Shiddiq, Opt. Commun. 203, 133 (2002).
    [CrossRef]
  4. S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 49 (2001).
    [CrossRef]
  5. D. A. Shaddock, M. B. Gray, and D. E. McClelland, Opt. Lett. 24, 1499 (1999).
    [CrossRef]
  6. D. A. Shaddock, “Advanced interferometry for gravitational wave detection,” Ph.D. dissertation (Australian National University, Canberra, Australia, 2000), Chap. 11; http://thesis.anu.edu.au .
  7. A. Thorne, U. Litzen, and S. Johansson, Spectrophysics: Principles and Applications (Springer-Verlag, Berlin, 1999).
  8. O. Schmidt, K.-M. Knack, R. Wynands, and D. Meschede, Appl. Phys. B 59, 167 (1994).
    [CrossRef]
  9. W. Lu, D. Milic, M. D. Hoogerland, M. Jacka, K. G. H. Baldwin, and S. J. Buckman, Rev. Sci. Instrum. 67, 3003 (1996).
    [CrossRef]

2002

C. I. Sukenik, H. C. Busch, and M. Shiddiq, Opt. Commun. 203, 133 (2002).
[CrossRef]

2001

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 49 (2001).
[CrossRef]

1999

1998

1996

W. Lu, D. Milic, M. D. Hoogerland, M. Jacka, K. G. H. Baldwin, and S. J. Buckman, Rev. Sci. Instrum. 67, 3003 (1996).
[CrossRef]

1994

O. Schmidt, K.-M. Knack, R. Wynands, and D. Meschede, Appl. Phys. B 59, 167 (1994).
[CrossRef]

1992

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

Baldwin, K. G. H.

W. Lu, D. Milic, M. D. Hoogerland, M. Jacka, K. G. H. Baldwin, and S. J. Buckman, Rev. Sci. Instrum. 67, 3003 (1996).
[CrossRef]

Buckman, S. J.

W. Lu, D. Milic, M. D. Hoogerland, M. Jacka, K. G. H. Baldwin, and S. J. Buckman, Rev. Sci. Instrum. 67, 3003 (1996).
[CrossRef]

Busch, H. C.

C. I. Sukenik, H. C. Busch, and M. Shiddiq, Opt. Commun. 203, 133 (2002).
[CrossRef]

Cho, H.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 49 (2001).
[CrossRef]

Corwin, K. L.

Epstein, R. J.

Gray, M. B.

Hand, C. F.

Hoogerland, M. D.

W. Lu, D. Milic, M. D. Hoogerland, M. Jacka, K. G. H. Baldwin, and S. J. Buckman, Rev. Sci. Instrum. 67, 3003 (1996).
[CrossRef]

Jacka, M.

W. Lu, D. Milic, M. D. Hoogerland, M. Jacka, K. G. H. Baldwin, and S. J. Buckman, Rev. Sci. Instrum. 67, 3003 (1996).
[CrossRef]

Johansson, S.

A. Thorne, U. Litzen, and S. Johansson, Spectrophysics: Principles and Applications (Springer-Verlag, Berlin, 1999).

Knack, K.-M.

O. Schmidt, K.-M. Knack, R. Wynands, and D. Meschede, Appl. Phys. B 59, 167 (1994).
[CrossRef]

Kwon, T. Y.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 49 (2001).
[CrossRef]

Lee, H. S.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 49 (2001).
[CrossRef]

Litzen, U.

A. Thorne, U. Litzen, and S. Johansson, Spectrophysics: Principles and Applications (Springer-Verlag, Berlin, 1999).

Lu, W.

W. Lu, D. Milic, M. D. Hoogerland, M. Jacka, K. G. H. Baldwin, and S. J. Buckman, Rev. Sci. Instrum. 67, 3003 (1996).
[CrossRef]

Lu, Z.-T.

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

McClelland, D. E.

Meschede, D.

O. Schmidt, K.-M. Knack, R. Wynands, and D. Meschede, Appl. Phys. B 59, 167 (1994).
[CrossRef]

Milic, D.

W. Lu, D. Milic, M. D. Hoogerland, M. Jacka, K. G. H. Baldwin, and S. J. Buckman, Rev. Sci. Instrum. 67, 3003 (1996).
[CrossRef]

Park, S. E.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 49 (2001).
[CrossRef]

Schmidt, O.

O. Schmidt, K.-M. Knack, R. Wynands, and D. Meschede, Appl. Phys. B 59, 167 (1994).
[CrossRef]

Shaddock, D. A.

D. A. Shaddock, M. B. Gray, and D. E. McClelland, Opt. Lett. 24, 1499 (1999).
[CrossRef]

D. A. Shaddock, “Advanced interferometry for gravitational wave detection,” Ph.D. dissertation (Australian National University, Canberra, Australia, 2000), Chap. 11; http://thesis.anu.edu.au .

Shiddiq, M.

C. I. Sukenik, H. C. Busch, and M. Shiddiq, Opt. Commun. 203, 133 (2002).
[CrossRef]

Steinbach, A.

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

Sukenik, C. I.

C. I. Sukenik, H. C. Busch, and M. Shiddiq, Opt. Commun. 203, 133 (2002).
[CrossRef]

Thorne, A.

A. Thorne, U. Litzen, and S. Johansson, Spectrophysics: Principles and Applications (Springer-Verlag, Berlin, 1999).

Wieman, C.

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

Wieman, C. E.

Wynands, R.

O. Schmidt, K.-M. Knack, R. Wynands, and D. Meschede, Appl. Phys. B 59, 167 (1994).
[CrossRef]

Am. J. Phys.

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

Appl. Opt.

Appl. Phys. B

O. Schmidt, K.-M. Knack, R. Wynands, and D. Meschede, Appl. Phys. B 59, 167 (1994).
[CrossRef]

Opt. Commun.

C. I. Sukenik, H. C. Busch, and M. Shiddiq, Opt. Commun. 203, 133 (2002).
[CrossRef]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 49 (2001).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

W. Lu, D. Milic, M. D. Hoogerland, M. Jacka, K. G. H. Baldwin, and S. J. Buckman, Rev. Sci. Instrum. 67, 3003 (1996).
[CrossRef]

Other

D. A. Shaddock, “Advanced interferometry for gravitational wave detection,” Ph.D. dissertation (Australian National University, Canberra, Australia, 2000), Chap. 11; http://thesis.anu.edu.au .

A. Thorne, U. Litzen, and S. Johansson, Spectrophysics: Principles and Applications (Springer-Verlag, Berlin, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for tilt locking to an atomic transition. (a)–(c) Illustration of the effect on the relative intensity of the beam halves of scanning across an atomic resonance.

Fig. 2
Fig. 2

Measured Cs 6S21/2,F=46P23/2 saturated absorption and error signals generated by the interferometer tilt-locking system. We used spatial mode filtering through an optical fiber (ThorLabs TS-PM-4621) to provide a clean TEM00 input to the interferometer. The inset shows the same information acquired from the 6S21/2,F=46P23/2, F=5 transition.

Fig. 3
Fig. 3

Theoretical prediction of Cs 6S21/2,F=46P23/2 (a) saturated absorption and (b) error signals generated by the interferometer tilt-locking system.

Fig. 4
Fig. 4

Calibrated time trace of the interferometer error signal for a single laser; at 20 s the servo lock is turned on. The inset shows the stabilized beat signal between two tilt-locked lasers, which we have measured to be sub-megahertz stable over many hours. The linewidth of this beat is measured to be 8 MHz at the 3-dB point, with a resolution bandwidth of approximately 100 kHz. This width is to be expected from our lasers, as discussed in the text.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ=2πνc-nx-1dx,

Metrics