Abstract

We propose to image local defects inside multidielectric optical components by using a special configuration Linnik interference microscope, along with a CCD camera and a dedicated detection, to extract the amplitude scattered by the defects in the interference image. The use of a short coherence length source allows one to obtain interference only from a thin slice 1 µm within the observed object. The object is tilted to permit the use of a dark-field configuration to enhance the defect contrast. We describe the experimental setup and the detection scheme. Images that exhibit local point defects on the interfaces of various multilayer optical components (laser mirrors) are presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Stover, Optical Scattering: Measurements and Analysis, 2nd ed. (SPIE Press, Bellingham, Wash., 1995), Chap. 6.
    [CrossRef]
  2. K. Creath, Prog. Opt. 26, 349–393 (1988).
    [CrossRef]
  3. S. S. C. Chim and G. S. Kino, Appl. Opt. 30, 2197 (1991).
    [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and F. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  5. P. A. Flourney, R. W. McClure, and J. C. Wyntjes, Appl. Opt. 11, 1907 (1972).
    [CrossRef]
  6. A. Harasaki, J. Schmit, and J. C. Wyant, Appl. Opt. 39, 2107 (2000).
    [CrossRef]
  7. L. Vabre, A. Dubois, and A. C. Boccara, Opt. Lett. 27, 530 (2002).
    [CrossRef]
  8. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, Appl. Opt. 41, 805 (2002).
    [CrossRef] [PubMed]
  9. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1998).
    [CrossRef]

2002 (2)

2000 (1)

1991 (2)

S. S. C. Chim and G. S. Kino, Appl. Opt. 30, 2197 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and F. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

1988 (1)

K. Creath, Prog. Opt. 26, 349–393 (1988).
[CrossRef]

1972 (1)

Beaurepaire, E.

Boccara, A. C.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1998).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and F. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Chim, S. S. C.

Creath, K.

K. Creath, Prog. Opt. 26, 349–393 (1988).
[CrossRef]

Dubois, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and F. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Flourney, P. A.

Fujimoto, F. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and F. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and F. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Harasaki, A.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and F. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and F. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1998).
[CrossRef]

Kino, G. S.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and F. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

McClure, R. W.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and F. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Schmit, J.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and F. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and F. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Stover, J. S.

J. S. Stover, Optical Scattering: Measurements and Analysis, 2nd ed. (SPIE Press, Bellingham, Wash., 1995), Chap. 6.
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and F. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Vabre, L.

Wyant, J. C.

Wyntjes, J. C.

Appl. Opt. (4)

Opt. Lett. (1)

Prog. Opt. (1)

K. Creath, Prog. Opt. 26, 349–393 (1988).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and F. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Other (2)

J. S. Stover, Optical Scattering: Measurements and Analysis, 2nd ed. (SPIE Press, Bellingham, Wash., 1995), Chap. 6.
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of our Linnik interference microscope. Phase modulation is achieved by a piezoelectric transducer (PZT) synchronized with image acquisition by means of the two generators. LS is a lens that enables the objectives to work in infinite conjugation. TTL, transistor–transistor logic; Out, sinusoidal signal driving the PZT.

Fig. 2
Fig. 2

Schematic of the dark-field configuration. The object is tilted to eliminate specular reflection. We obtain one echo per interface. LC is the coherence length of the light source LC/21.3 µm.

Fig. 3
Fig. 3

Images of a multidielectric component. (a) Image before the limit angle. We can clearly observe one interferogram per interface. Some large defects have already been revealed. (b) Image in the dark-field configuration. No interferogram is visible. Point defects are well defined on the various interfaces. Exposure time, 2 s. Field of view, 380 µm×380 µm.

Fig. 4
Fig. 4

(a) Response of a CO2 laser mirror. Three interfaces with various local defects have been detected. (b) Sum of the pixel values along the direction of the fringes (column). Three peaks, corresponding to three interfaces, are apparent. Exposure time, 2 s. Field of view, 380 µm×380 µm.

Fig. 5
Fig. 5

Radius of the smallest detectable particle as a function of the number of sequences acquired (1 sequence = total exposure time 4/f0.02 s). These values were obtained by use of Mie scattering theory; a spherical air bubble inside a silica substrate is assumed.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Rmin=Rref+2Rinc2NξmaxRref,
ϕmin=34λπ4Rminnpm2+2m2-12×4-3 cos θmax- cos3 θmax-11/6,

Metrics