Abstract

We analyze the evolution of the polarization state of a signal in a recirculating loop with polarization-dependent loss. We show that the polarization-state evolution in experiments is in qualitative agreement with our analysis, and we discuss the relationship between the polarization-state evolution and the Q factor.

© 2002 Optical Society of America

Full Article  |  PDF Article
Related Articles
Laser eigenstates in the framework of a spatially generalized Jones matrix formalism

F. Bretenaker and A. Le Floch
J. Opt. Soc. Am. B 8(2) 230-238 (1991)

Ring-laser gyro with spatially resolved eigenstates

Marc Vallet, Nam Huu Tran, Pierre Tanguy, Albert Le Floch, and Fabien Bretenaker
Opt. Lett. 19(16) 1219-1221 (1994)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription