Abstract

Cavity-enhanced methods have been extended to fiber optics by use of fiber Bragg gratings (FBGs) as reflectors. High-finesse fiber cavities were fabricated from FBGs made in both germanium/boron-co-doped photosensitive fiber and hydrogen-loaded Corning SMF-28 fiber. Optical losses in these cavities were determined from the measured Fabry–Perot transmission spectra and cavity ring-down spectroscopy. For a 10-m-long single-mode fiber cavity, ring-down times in excess of 2 ms were observed at 1563.6 nm, and individual laser pulses were resolved. An evanescent-wave access block was produced within a fiber cavity, and an enhanced sensitivity to optical loss was observed as the external medium’s refractive index was altered.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Arnold, Anal. Chem. 64, 1015 (1992).
  2. J. Burck, J.-P. Conzen, B. Beckhaus, and H.-J. Ache, Sens. Actuators B 18, 291 (1994).
    [CrossRef]
  3. M. E. Lippitsch and S. Draxler, Sens. Actuators B 11, 97 (1993).
    [CrossRef]
  4. G. Berden, R. Peeters, and G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000).
    [CrossRef]
  5. A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
    [CrossRef]
  6. A. O’Keefe, J. J. Scherer, and J. B. Paul, Chem. Phys. Lett. 307, 343 (1999).
    [CrossRef]
  7. J. B. Paul, L. Lapson, and J. G. Anderson, Appl. Opt. 40, 4904 (2001).
    [CrossRef]
  8. P. Zalicki and R. N. Zare, J. Chem. Phys. 102, 2708 (1995).
  9. J. Stone and D. Marcuse, J. Lightwave Technol. 4, 382 (1986).
    [CrossRef]
  10. D. Marcuse, J. Lightwave Technol. 4, 377 (1986).
    [CrossRef]
  11. T. von Lerber and M. W. Sigrist, Appl. Opt. 413567 (2002); see also T. von Lerber and M. W. Sigrist, “A method for measuring at least one physical parameter using an optical resonator,” European patentEP00121314.9 pending (2002).
    [CrossRef]
  12. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  13. D. Johlen, F. Knappe, H. Reener, and E. Brinkmeyer, in Digest of Optical Fiber Communication Conference (OFC), OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper ThD1.

2002 (1)

2001 (1)

2000 (1)

G. Berden, R. Peeters, and G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000).
[CrossRef]

1999 (1)

A. O’Keefe, J. J. Scherer, and J. B. Paul, Chem. Phys. Lett. 307, 343 (1999).
[CrossRef]

1995 (1)

P. Zalicki and R. N. Zare, J. Chem. Phys. 102, 2708 (1995).

1994 (1)

J. Burck, J.-P. Conzen, B. Beckhaus, and H.-J. Ache, Sens. Actuators B 18, 291 (1994).
[CrossRef]

1993 (1)

M. E. Lippitsch and S. Draxler, Sens. Actuators B 11, 97 (1993).
[CrossRef]

1992 (1)

M. A. Arnold, Anal. Chem. 64, 1015 (1992).

1988 (1)

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

1986 (2)

J. Stone and D. Marcuse, J. Lightwave Technol. 4, 382 (1986).
[CrossRef]

D. Marcuse, J. Lightwave Technol. 4, 377 (1986).
[CrossRef]

Ache, H.-J.

J. Burck, J.-P. Conzen, B. Beckhaus, and H.-J. Ache, Sens. Actuators B 18, 291 (1994).
[CrossRef]

Anderson, J. G.

Arnold, M. A.

M. A. Arnold, Anal. Chem. 64, 1015 (1992).

Beckhaus, B.

J. Burck, J.-P. Conzen, B. Beckhaus, and H.-J. Ache, Sens. Actuators B 18, 291 (1994).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, and G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000).
[CrossRef]

Brinkmeyer, E.

D. Johlen, F. Knappe, H. Reener, and E. Brinkmeyer, in Digest of Optical Fiber Communication Conference (OFC), OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper ThD1.

Burck, J.

J. Burck, J.-P. Conzen, B. Beckhaus, and H.-J. Ache, Sens. Actuators B 18, 291 (1994).
[CrossRef]

Conzen, J.-P.

J. Burck, J.-P. Conzen, B. Beckhaus, and H.-J. Ache, Sens. Actuators B 18, 291 (1994).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Draxler, S.

M. E. Lippitsch and S. Draxler, Sens. Actuators B 11, 97 (1993).
[CrossRef]

Johlen, D.

D. Johlen, F. Knappe, H. Reener, and E. Brinkmeyer, in Digest of Optical Fiber Communication Conference (OFC), OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper ThD1.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).

Knappe, F.

D. Johlen, F. Knappe, H. Reener, and E. Brinkmeyer, in Digest of Optical Fiber Communication Conference (OFC), OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper ThD1.

Lapson, L.

Lippitsch, M. E.

M. E. Lippitsch and S. Draxler, Sens. Actuators B 11, 97 (1993).
[CrossRef]

Marcuse, D.

D. Marcuse, J. Lightwave Technol. 4, 377 (1986).
[CrossRef]

J. Stone and D. Marcuse, J. Lightwave Technol. 4, 382 (1986).
[CrossRef]

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000).
[CrossRef]

O’Keefe, A.

A. O’Keefe, J. J. Scherer, and J. B. Paul, Chem. Phys. Lett. 307, 343 (1999).
[CrossRef]

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Paul, J. B.

J. B. Paul, L. Lapson, and J. G. Anderson, Appl. Opt. 40, 4904 (2001).
[CrossRef]

A. O’Keefe, J. J. Scherer, and J. B. Paul, Chem. Phys. Lett. 307, 343 (1999).
[CrossRef]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000).
[CrossRef]

Reener, H.

D. Johlen, F. Knappe, H. Reener, and E. Brinkmeyer, in Digest of Optical Fiber Communication Conference (OFC), OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper ThD1.

Scherer, J. J.

A. O’Keefe, J. J. Scherer, and J. B. Paul, Chem. Phys. Lett. 307, 343 (1999).
[CrossRef]

Sigrist, M. W.

Stone, J.

J. Stone and D. Marcuse, J. Lightwave Technol. 4, 382 (1986).
[CrossRef]

von Lerber, T.

Zalicki, P.

P. Zalicki and R. N. Zare, J. Chem. Phys. 102, 2708 (1995).

Zare, R. N.

P. Zalicki and R. N. Zare, J. Chem. Phys. 102, 2708 (1995).

Anal. Chem. (1)

M. A. Arnold, Anal. Chem. 64, 1015 (1992).

Appl. Opt. (2)

Chem. Phys. Lett. (1)

A. O’Keefe, J. J. Scherer, and J. B. Paul, Chem. Phys. Lett. 307, 343 (1999).
[CrossRef]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000).
[CrossRef]

J. Chem. Phys. (1)

P. Zalicki and R. N. Zare, J. Chem. Phys. 102, 2708 (1995).

J. Lightwave Technol. (2)

J. Stone and D. Marcuse, J. Lightwave Technol. 4, 382 (1986).
[CrossRef]

D. Marcuse, J. Lightwave Technol. 4, 377 (1986).
[CrossRef]

Rev. Sci. Instrum. (1)

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Sens. Actuators B (2)

J. Burck, J.-P. Conzen, B. Beckhaus, and H.-J. Ache, Sens. Actuators B 18, 291 (1994).
[CrossRef]

M. E. Lippitsch and S. Draxler, Sens. Actuators B 11, 97 (1993).
[CrossRef]

Other (2)

R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).

D. Johlen, F. Knappe, H. Reener, and E. Brinkmeyer, in Digest of Optical Fiber Communication Conference (OFC), OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper ThD1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Fabry–Perot transmission spectrum centered at 1590.5 nm of a fiber cavity fabricated in germanium/boron-co-doped photosensitive fiber. The cavity is 2.9 cm long and has a finesse of 1276. The inset shows an expanded view of a single transmission peak used to determine the cavity finesse.

Fig. 2
Fig. 2

CRDS of a 10-m-long fiber cavity fabricated with hydrogen-loaded FBGs in SMF-28 telecommunications fiber. (a)–(c) The ring-down time τ changes as the laser is tuned through 1563.6 nm, the grating’s resonance. Since the cavity round-trip time exceeds the laser’s pulse width, the individual laser pulses are clearly resolved. The slow modulation in (b) is a finite data-sampling artifact.

Fig. 3
Fig. 3

Optical loss through an exposed core fiber as a function of the external medium’s index of refraction. The circles represent a regular evanescent-wave access block, and the squares are a cavity-enhanced block. The fit to the regular block data is empirical, and the fit to the cavity-enhanced data gives an enhancement factor of 100 for small absorptions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔI/I=GA,
τ=nLc1-R+A,

Metrics