Abstract

By simultaneously controlling repetition and carrier frequencies, one can achieve the phase coherent superposition of a collection of successive pulses from a mode-locked laser. An optical cavity can be used for coherent delay and constructive interference of sequential pulses until a cavity dump is enabled to switch out the amplified pulse. This approach will lead to an effective amplification process through decimation of the original pulse rate while the overall coherence from the oscillator is preserved. Detailed calculations show the limiting effects of intracavity dispersion and indicate that enhancement of sub-100-fs pulses to microjoule energies is experimentally feasible.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
    [CrossRef] [PubMed]
  2. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
    [CrossRef] [PubMed]
  3. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
    [CrossRef]
  4. A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901–1 (2002).
  5. R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
    [CrossRef] [PubMed]
  6. E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
    [CrossRef]
  7. V. P. Yanovsky and F. W. Wise, Opt. Lett. 19, 1952 (1994).
    [CrossRef] [PubMed]
  8. T. Hänsch, T. Heupel, and M. Weitz, “Method and device for generating phase-coherent light pulses,” U.S. patent 6, 038, 055 (March 14, 2000).
  9. R. J. Jones and J.-C. Diels, Phys. Rev. Lett. 86, 3288 (2001).
    [CrossRef] [PubMed]
  10. R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, Phys. Rev. A 37, 1802 (1988).
    [CrossRef] [PubMed]

2002

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901–1 (2002).

2001

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

R. J. Jones and J.-C. Diels, Phys. Rev. Lett. 86, 3288 (2001).
[CrossRef] [PubMed]

2000

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

1999

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

1994

1988

R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, Phys. Rev. A 37, 1802 (1988).
[CrossRef] [PubMed]

Apolonski, A.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Baltuška, A.

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901–1 (2002).

Brabec, T.

T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

Brewer, R. G.

R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, Phys. Rev. A 37, 1802 (1988).
[CrossRef] [PubMed]

Crosson, E. R.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

DeVoe, R. G.

R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, Phys. Rev. A 37, 1802 (1988).
[CrossRef] [PubMed]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Diels, J.-C.

R. J. Jones and J.-C. Diels, Phys. Rev. Lett. 86, 3288 (2001).
[CrossRef] [PubMed]

Fabre, C.

R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, Phys. Rev. A 37, 1802 (1988).
[CrossRef] [PubMed]

Fuji, T.

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901–1 (2002).

Haar, P.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Hall, J. L.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Hänsch, T.

T. Hänsch, T. Heupel, and M. Weitz, “Method and device for generating phase-coherent light pulses,” U.S. patent 6, 038, 055 (March 14, 2000).

Hänsch, T. W.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Heupel, T.

T. Hänsch, T. Heupel, and M. Weitz, “Method and device for generating phase-coherent light pulses,” U.S. patent 6, 038, 055 (March 14, 2000).

Hoffnagle, J.

R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, Phys. Rev. A 37, 1802 (1988).
[CrossRef] [PubMed]

Holzwarth, R.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Jones, R. J.

R. J. Jones and J.-C. Diels, Phys. Rev. Lett. 86, 3288 (2001).
[CrossRef] [PubMed]

Jungmann, K.

R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, Phys. Rev. A 37, 1802 (1988).
[CrossRef] [PubMed]

Kapteyn, H. C.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Kobayashi, T.

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901–1 (2002).

Krausz, F.

T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Ma, L.-S.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Marcus, G. A.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Murnane, M. M.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Paldus, B. A.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Poppe, A.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Schwettman, H. A.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Shelton, R. K.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Spence, T. G.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Spielmann, C.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Tempea, G.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Udem, Th.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Weitz, M.

T. Hänsch, T. Heupel, and M. Weitz, “Method and device for generating phase-coherent light pulses,” U.S. patent 6, 038, 055 (March 14, 2000).

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Wise, F. W.

Yanovsky, V. P.

Ye, J.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Zare, R. N.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Opt. Lett.

Phys. Rev. A

R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, Phys. Rev. A 37, 1802 (1988).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901–1 (2002).

R. J. Jones and J.-C. Diels, Phys. Rev. Lett. 86, 3288 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys.

T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

Rev. Sci. Instrum.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Science

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Other

T. Hänsch, T. Heupel, and M. Weitz, “Method and device for generating phase-coherent light pulses,” U.S. patent 6, 038, 055 (March 14, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Coherent pulse amplification with the aid of an optical cavity. (a) Time-domain picture showing matching of the pulse repetition period with the cavity round-trip time. The intracavity pulse is switched out when sufficient energy is built up in the cavity. Intracavity dispersion compensation is not shown. (b) Frequency-domain illustration showing the matching of the pulse comb structure with corresponding cavity modes, which ensures the efficient coupling of the pulse energy into the cavity.

Fig. 2
Fig. 2

Relationship between input and output (amplified) pulse widths through the cavity for three maximum cavity magnifications (M). Filled (open) points indicate results from steady-state (time-dependent) calculations. Inset, transmission and phase coefficients of the cavity transfer function for the pulse train obtained from steady-state calculations. Even for an amplification factor of 1000, output pulses well under 100 fs are achievable.

Fig. 3
Fig. 3

Intracavity peak power normalized to the maximum achievable effective gain versus input pulse duration for different cavity magnifications. Filled (open) points, results from frequency- (time-) domain calculations. When the input pulse width is narrow and (or) the finesse is high (for large amplification), intracavity dispersion will limit the amount of coherent superposition allowed. For a 100-fs pulse with a desired amplification factor of 1000, nearly 100% of the design goal is achievable.

Fig. 4
Fig. 4

Results from time-dependent calculation showing the coherent evolution of a 50-fs pulse inside the cavity. Dashed curve, ideal case of a dispersion-free cavity perfectly matched with the incident pulse train; solid curve, effect of cavity dispersion in limiting the amount of energy coupled into the cavity.

Metrics