Abstract

The interaction of strong low-area pulses with two-level systems shows absorption line narrowing and hole burning within the homogeneous linewidth as a result of nonlinear wave mixing. The wave mixing results from the two-level electronic saturation nonlinearity and occurs, depending on the sign of the pulse area, as a strong absorption enhancement or gain at the transition frequency of the two-level system for resonant excitation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen and J. H. Eberly, Optical Resonance and Two Level Systems (Wiley, New York, 1975).
  2. A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
    [CrossRef]
  3. M. D. Crisp, Phys. Rev. A 1, 1604 (1970).
    [CrossRef]
  4. D. C. Burnham and R. Y. Chiao, Phys. Rev. 188, 667 (1969).
    [CrossRef]
  5. G. L. Lamb, Rev. Mod. Phys. 43, 99 (1971).
    [CrossRef]
  6. J. Förstner, A. Knorr, and S. W. Koch, Phys. Rev. Lett. 86, 476 (2001).
    [CrossRef]
  7. T. Yajima and Y. Taira, J. Phys. Soc. Jpn. 47, 1620 (1979).
    [CrossRef]

2001

J. Förstner, A. Knorr, and S. W. Koch, Phys. Rev. Lett. 86, 476 (2001).
[CrossRef]

1995

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

1979

T. Yajima and Y. Taira, J. Phys. Soc. Jpn. 47, 1620 (1979).
[CrossRef]

1971

G. L. Lamb, Rev. Mod. Phys. 43, 99 (1971).
[CrossRef]

1970

M. D. Crisp, Phys. Rev. A 1, 1604 (1970).
[CrossRef]

1969

D. C. Burnham and R. Y. Chiao, Phys. Rev. 188, 667 (1969).
[CrossRef]

Allen, L.

L. Allen and J. H. Eberly, Optical Resonance and Two Level Systems (Wiley, New York, 1975).

Burnham, D. C.

D. C. Burnham and R. Y. Chiao, Phys. Rev. 188, 667 (1969).
[CrossRef]

Chiao, R. Y.

D. C. Burnham and R. Y. Chiao, Phys. Rev. 188, 667 (1969).
[CrossRef]

Crisp, M. D.

M. D. Crisp, Phys. Rev. A 1, 1604 (1970).
[CrossRef]

Eberly, J. H.

L. Allen and J. H. Eberly, Optical Resonance and Two Level Systems (Wiley, New York, 1975).

Förstner, J.

J. Förstner, A. Knorr, and S. W. Koch, Phys. Rev. Lett. 86, 476 (2001).
[CrossRef]

Knorr, A.

J. Förstner, A. Knorr, and S. W. Koch, Phys. Rev. Lett. 86, 476 (2001).
[CrossRef]

Koch, S. W.

J. Förstner, A. Knorr, and S. W. Koch, Phys. Rev. Lett. 86, 476 (2001).
[CrossRef]

Lamb, G. L.

G. L. Lamb, Rev. Mod. Phys. 43, 99 (1971).
[CrossRef]

Taira, Y.

T. Yajima and Y. Taira, J. Phys. Soc. Jpn. 47, 1620 (1979).
[CrossRef]

Weiner, A. M.

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

Yajima, T.

T. Yajima and Y. Taira, J. Phys. Soc. Jpn. 47, 1620 (1979).
[CrossRef]

J. Phys. Soc. Jpn.

T. Yajima and Y. Taira, J. Phys. Soc. Jpn. 47, 1620 (1979).
[CrossRef]

Phys. Rev.

D. C. Burnham and R. Y. Chiao, Phys. Rev. 188, 667 (1969).
[CrossRef]

Phys. Rev. A

M. D. Crisp, Phys. Rev. A 1, 1604 (1970).
[CrossRef]

Phys. Rev. Lett.

J. Förstner, A. Knorr, and S. W. Koch, Phys. Rev. Lett. 86, 476 (2001).
[CrossRef]

Prog. Quantum Electron.

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

Rev. Mod. Phys.

G. L. Lamb, Rev. Mod. Phys. 43, 99 (1971).
[CrossRef]

Other

L. Allen and J. H. Eberly, Optical Resonance and Two Level Systems (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectral absorption of a two-level system excited with a positive definite Gaussian input pulse Ω> for increasing pulse area, Θ¯=Θ=0.01π (linear case, thick solid curve), 0.5π (dashed curve), 1.5π (dotted curve), 2π (thin solid curve). For nonlinear excitation, the homogeneous line is uniformly suppressed and finally gain is generated.

Fig. 2
Fig. 2

Hole-burning effect in the spectral absorption of a two-level system for 1 with a positive small-area pulse Θ=0.003Θ¯ for increasing pulse area, Θ¯=0.01π (linear case, thick solid curve), 0.5π (dashed curve), 1.5π (dotted curve), 2π (thin solid curve).

Fig. 3
Fig. 3

Line narrowing of the spectral absorption of a two-level system excited with a negative small-area pulse Θ¯=-0.003Θ¯ for increasing pulse area, Θ¯=0.01π (linear case, thick solid curve), 0.5π (dashed curve), 1.5π (dotted curve), 2π (thin solid curve).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P˜m=dNvP˜,
P˜˙=-γP˜-iP˜+iΩ21-2n,
n˙=-2γn+i2ΩP˜*-c.c.,
P˙l=-γPl+iΩ2.
P˙nl=-γPnl-iΩPl2.
αl=γγ2+ω2.
Ω˜ω=-+dtΩtexpiωt-+dtΩt+iω-+dtΩtt=Θ+iωM,
αnl=-2Mf˜γ+γpγω2+γ2+γpω2+γp2.

Metrics