Abstract

Three-dimensional photonic crystals with bandgaps of 1.52.3 µm in wavelength and with gap/midgap ratios of as much as 18% were generated efficiently by two-photon photopolymerization in a liquid resin. From 0.5–1.1-mW femtosecond-pulsed 540-nm light, woodpile structures consisting of 40 layers of elliptically shaped rods spaced at 350–500 nm were fabricated by focusing with a 1.3-N.A. objective. The high degree of correlation in these structures allowed the suppression of infrared transmission by as much as 50% as well as the observation of higher-order bandgaps. We also investigated the decrease in the gap wavelength on reduction of layer spacing, in-plane rod spacing, and rod size.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription