Abstract

We report a demonstration of distributed-feedback (DFB) optical parametric oscillation (OPO) by writing photorefractive gratings in periodically poled lithium niobate (PPLN). The photorefractive DFB structures were fabricated by illumination of PPLN with UV light through a photomask and by writing of PPLN with UV-light gated interfering laser beams at 532 nm. Evidence of OPO was observed from the spectral narrowing at the 1438.8- and the 619.3-nm signal wavelengths from 1064- and 532-nm-pumped PPLN crystals with the DFB grating periods phase matched to the 4084.5- and 3774-nm idler wavelengths, respectively.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).
    [CrossRef]
  2. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, and R. L. Byer, Opt. Lett. 20, 52 (1995).
    [CrossRef] [PubMed]
  3. J. J. Zayhowski, Opt. Lett. 22, 169 (1997).
    [CrossRef] [PubMed]
  4. A. C. Chiang, Y. W. Fang, Y. H. Chen, and Y. C. Huang, Opt. Lett. 26, 66 (2001).
    [CrossRef]
  5. M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, Opt. Lett. 24, 1227 (1999).
    [CrossRef]
  6. L. E. Myers, R. C. Eckardt, and M. M. Fejer, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  7. L. A. Gloster, I. T. McKinnie, Z. X. Jiang, T. A. King, J. M. Boon-Engering, W. E. van der Veer, and W. Hogervorst, J. Opt. Soc. Am. B 12, 2117 (1995).
    [CrossRef]
  8. W. R. Bosenberg and D. R. Guyer, J. Opt. Soc. Am. B 10, 1716 (1993).
    [CrossRef]
  9. M. Taya, M. C. Bashaw, and M. M. Fejer, Opt. Lett. 21, 857 (1996).
    [CrossRef] [PubMed]
  10. J. Sochtig, R. Gross, I. Baumann, W. Sohler, H. Schutz, and R. Widmer, Electron. Lett. 31, 551 (1995).
    [CrossRef]
  11. P. Günter, J.-P. Huignard, G. C. Valley, J. F. Lam, and R. A. Mullen, in Photorefractive Materials and Their Applications, P. Gunter and J.-P. Huignard, eds., Vol. 61 of Springer Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 25, 82, 176, respectively.
  12. K. K. Wong, in Properties of Lithium Niobate, S. C. Abrahams, ed. (Institute of Electrical Engineers, London, 1989), p. 148.
  13. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
    [CrossRef] [PubMed]

2001 (1)

1999 (1)

1998 (1)

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

1997 (1)

1996 (1)

1995 (4)

1993 (1)

1972 (1)

H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).
[CrossRef]

Akella, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Bashaw, M. C.

Baumann, I.

J. Sochtig, R. Gross, I. Baumann, W. Sohler, H. Schutz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

Boon-Engering, J. M.

Bosenberg, W. R.

Byer, R. L.

Chen, Y. H.

Chiang, A. C.

Dominic, V.

Eckardt, R. C.

Fang, Y. W.

Fejer, M. M.

Gloster, L. A.

Gross, R.

J. Sochtig, R. Gross, I. Baumann, W. Sohler, H. Schutz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

Günter, P.

P. Günter, J.-P. Huignard, G. C. Valley, J. F. Lam, and R. A. Mullen, in Photorefractive Materials and Their Applications, P. Gunter and J.-P. Huignard, eds., Vol. 61 of Springer Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 25, 82, 176, respectively.

Guyer, D. R.

Hesselink, L.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Hogervorst, W.

Huang, Y. C.

Huignard, J.-P.

P. Günter, J.-P. Huignard, G. C. Valley, J. F. Lam, and R. A. Mullen, in Photorefractive Materials and Their Applications, P. Gunter and J.-P. Huignard, eds., Vol. 61 of Springer Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 25, 82, 176, respectively.

Jiang, Z. X.

King, T. A.

Kogelnik, H.

H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).
[CrossRef]

Lam, J. F.

P. Günter, J.-P. Huignard, G. C. Valley, J. F. Lam, and R. A. Mullen, in Photorefractive Materials and Their Applications, P. Gunter and J.-P. Huignard, eds., Vol. 61 of Springer Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 25, 82, 176, respectively.

Lande, D.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Liu, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

McKinnie, I. T.

Miller, G. D.

Missey, M. J.

Mullen, R. A.

P. Günter, J.-P. Huignard, G. C. Valley, J. F. Lam, and R. A. Mullen, in Photorefractive Materials and Their Applications, P. Gunter and J.-P. Huignard, eds., Vol. 61 of Springer Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 25, 82, 176, respectively.

Myers, L. E.

Neurgaonkar, R. R.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Orlov, S. S.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Powers, P. E.

Schepler, K. L.

Schutz, H.

J. Sochtig, R. Gross, I. Baumann, W. Sohler, H. Schutz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).
[CrossRef]

Sochtig, J.

J. Sochtig, R. Gross, I. Baumann, W. Sohler, H. Schutz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

Sohler, W.

J. Sochtig, R. Gross, I. Baumann, W. Sohler, H. Schutz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

Taya, M.

Valley, G. C.

P. Günter, J.-P. Huignard, G. C. Valley, J. F. Lam, and R. A. Mullen, in Photorefractive Materials and Their Applications, P. Gunter and J.-P. Huignard, eds., Vol. 61 of Springer Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 25, 82, 176, respectively.

van der Veer, W. E.

Widmer, R.

J. Sochtig, R. Gross, I. Baumann, W. Sohler, H. Schutz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

Wong, K. K.

K. K. Wong, in Properties of Lithium Niobate, S. C. Abrahams, ed. (Institute of Electrical Engineers, London, 1989), p. 148.

Zayhowski, J. J.

Electron. Lett. (1)

J. Sochtig, R. Gross, I. Baumann, W. Sohler, H. Schutz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

J. Appl. Phys. (1)

H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (5)

Science (1)

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Other (2)

P. Günter, J.-P. Huignard, G. C. Valley, J. F. Lam, and R. A. Mullen, in Photorefractive Materials and Their Applications, P. Gunter and J.-P. Huignard, eds., Vol. 61 of Springer Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 25, 82, 176, respectively.

K. K. Wong, in Properties of Lithium Niobate, S. C. Abrahams, ed. (Institute of Electrical Engineers, London, 1989), p. 148.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Signal spectra of the 1064-nm-pumped OPG and DFB OPO at different temperatures. The measured spectral width of the OPG was 3 nm and that of the DFB OPO was 0.3 nm. The DFB OPO signal wavelength, defined by the DFB grating, remained unchanged when the temperature was varied.

Fig. 2
Fig. 2

1438.8-nm DFB OPO signal energy versus pump energy phase matched at 115.4 °C. With the internal pump energy of 6.75 µJ, the DFB OPO signal energy was 1 µJ. The pump threshold energy was 4.5 µJ, corresponding to 6-kW pump power.

Fig. 3
Fig. 3

Signal spectra for the 532-nm-pumped PPLN DFB OPO at different temperatures. Again, the DFB OPO signal wavelength is fixed at 619.3 nm regardless of the change of the temperature. However, the OPG signal, the smaller one to the right of the 619.7-nm OPO signal, changes its position as the temperature varies.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δnz=no2ne3r51Ex2/2,
Δnz=ne3r33Ez/210-5,

Metrics