Abstract

We report efficient generation of cw yellow light by use of single-pass sum-frequency mixing from a diode-pumped Nd:YVO4 dual-wavelength laser with periodically poled lithium niobate. A diode-pumped Nd:YVO4 dual-wavelength laser is implemented with a three-mirror cavity, and the optimum oscillation condition is obtained from theoretical analysis. We extracted 78 mW of power at 593 nm from 1.2 W at 1064 nm and from 1.0 W at 1342 nm in a beam with excellent quality. The output power could probably be increased to 92 mW by antireflection coating of the crystal.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Kretschmann, F. Heine, G. Huber, and T. Halldórsson, Opt. Lett. 22, 1461 (1971).
    [CrossRef]
  2. J. D. Vance, C. Y. She, and H. Moosmüller, Appl. Opt. 37, 4891 (1998).
    [CrossRef]
  3. H. Moosmüller and J. D. Vance, Opt. Lett. 22, 1135 (1997).
    [CrossRef]
  4. S. Spiekermann, H. Karlsson, F. Laurell, and I. Freitag, Electron. Lett. 36, 543 (2000).
    [CrossRef]
  5. V. E. Nadtocheev and O. E. Naniî, Sov. J. Quantum Electron. 19, 444 (1989).
    [CrossRef]
  6. H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Guang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, Appl. Phys. Lett. 56, 1937 (1990).
    [CrossRef]
  7. Casix, “Crystals and materials laser accessories,” crystal guide 97/98 (Casix, Fujian, China, 1998), pp. 38–41.
  8. Y. F. Chen, Appl. Phys. B 70, 475 (2000).
    [CrossRef]
  9. D. H. Jundt, Opt. Lett. 15, 1553 (1997).
    [CrossRef]
  10. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  11. A. E. Siegman, M. W. Sasnett, and T. F. Johnston, IEEE J. Quantum Electron. 27, 1098 (1991).
    [CrossRef]

2000 (2)

S. Spiekermann, H. Karlsson, F. Laurell, and I. Freitag, Electron. Lett. 36, 543 (2000).
[CrossRef]

Y. F. Chen, Appl. Phys. B 70, 475 (2000).
[CrossRef]

1998 (1)

1997 (2)

1991 (1)

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, IEEE J. Quantum Electron. 27, 1098 (1991).
[CrossRef]

1990 (1)

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Guang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, Appl. Phys. Lett. 56, 1937 (1990).
[CrossRef]

1989 (1)

V. E. Nadtocheev and O. E. Naniî, Sov. J. Quantum Electron. 19, 444 (1989).
[CrossRef]

1971 (1)

1968 (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Chen, Y. F.

Y. F. Chen, Appl. Phys. B 70, 475 (2000).
[CrossRef]

Freitag, I.

S. Spiekermann, H. Karlsson, F. Laurell, and I. Freitag, Electron. Lett. 36, 543 (2000).
[CrossRef]

Guang, C. H.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Guang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, Appl. Phys. Lett. 56, 1937 (1990).
[CrossRef]

Halldórsson, T.

Heine, F.

Huber, G.

Johnston, T. F.

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, IEEE J. Quantum Electron. 27, 1098 (1991).
[CrossRef]

Jundt, D. H.

D. H. Jundt, Opt. Lett. 15, 1553 (1997).
[CrossRef]

Karlsson, H.

S. Spiekermann, H. Karlsson, F. Laurell, and I. Freitag, Electron. Lett. 36, 543 (2000).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Kretschmann, H. M.

Laurell, F.

S. Spiekermann, H. Karlsson, F. Laurell, and I. Freitag, Electron. Lett. 36, 543 (2000).
[CrossRef]

Moosmüller, H.

Nadtocheev, V. E.

V. E. Nadtocheev and O. E. Naniî, Sov. J. Quantum Electron. 19, 444 (1989).
[CrossRef]

Naniî, O. E.

V. E. Nadtocheev and O. E. Naniî, Sov. J. Quantum Electron. 19, 444 (1989).
[CrossRef]

Sasnett, M. W.

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, IEEE J. Quantum Electron. 27, 1098 (1991).
[CrossRef]

She, C. Y.

Shen, H. Y.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Guang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, Appl. Phys. Lett. 56, 1937 (1990).
[CrossRef]

Siegman, A. E.

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, IEEE J. Quantum Electron. 27, 1098 (1991).
[CrossRef]

Spiekermann, S.

S. Spiekermann, H. Karlsson, F. Laurell, and I. Freitag, Electron. Lett. 36, 543 (2000).
[CrossRef]

Vance, J. D.

Ye, Q. J.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Guang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, Appl. Phys. Lett. 56, 1937 (1990).
[CrossRef]

Yu, G. F.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Guang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, Appl. Phys. Lett. 56, 1937 (1990).
[CrossRef]

Zeng, R. R.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Guang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, Appl. Phys. Lett. 56, 1937 (1990).
[CrossRef]

Zeng, Z. D.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Guang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, Appl. Phys. Lett. 56, 1937 (1990).
[CrossRef]

Zhang, W. J.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Guang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, Appl. Phys. Lett. 56, 1937 (1990).
[CrossRef]

Zhou, Y. P.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Guang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, Appl. Phys. Lett. 56, 1937 (1990).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. F. Chen, Appl. Phys. B 70, 475 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Guang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, Appl. Phys. Lett. 56, 1937 (1990).
[CrossRef]

Electron. Lett. (1)

S. Spiekermann, H. Karlsson, F. Laurell, and I. Freitag, Electron. Lett. 36, 543 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, IEEE J. Quantum Electron. 27, 1098 (1991).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Opt. Lett. (3)

Sov. J. Quantum Electron. (1)

V. E. Nadtocheev and O. E. Naniî, Sov. J. Quantum Electron. 19, 444 (1989).
[CrossRef]

Other (1)

Casix, “Crystals and materials laser accessories,” crystal guide 97/98 (Casix, Fujian, China, 1998), pp. 38–41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the diode-end-pumped Nd:YVO4 laser cavity for simultaneous oscillation at 1064 and 1342 nm.

Fig. 2
Fig. 2

Dependence of the total power and the relative output powers at 1064 and 1342 nm on the absorbed pump power.

Fig. 3
Fig. 3

Phase-matching temperature as a function of the grating period of the PPLN for SFG process at 1064 and 1342 nm.

Fig. 4
Fig. 4

Result for calculation of the dependence of relative SFG efficiency on focal length.

Fig. 5
Fig. 5

Dependence of the generated yellow power on the total incident fundamental power at the optimum phase-matching temperature. Inset, optical spectrum at the maximum output power.

Fig. 6
Fig. 6

Power-intensity spectrum of laser emission at 593 nm.

Metrics