Abstract

We investigated the condition of unique self-written channel and multichannel propagation inside bulk photopolymerizable materials. Light was introduced in the medium by a single-mode optical fiber. At a very low beam power of 5 µW, a unique uniform-channel waveguide without any broadening was obtained by polymerization. When the input power is increased to 100 µW, the guide becomes chaotic and multichannel. We connected two fibers separated by a 1-cm distance. The results open the door to studies of the optical and electro-optical properties of photopolymerized guides doped by nonlinear optical chromophores and to possible applications in integrated optical devices.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Monro, C. M. De Sterke, and L. Poladian, Opt. Commun. 119, 523 (1995).
    [CrossRef]
  2. S. Kewitsch and A. Yariv, Opt. Lett. 21, 24 (1996).
    [CrossRef] [PubMed]
  3. S. Kewitsch and A. Yariv, Appl. Phys. Lett. 68, 455 (1996).
    [CrossRef]
  4. M. Kagami, T. Yamashita, and H. Ito, Appl. Phys. Lett. 79, 1079 (2001).
    [CrossRef]
  5. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D.-J. Lougnot, Appl. Opt. 40, 5860 (2001).
    [CrossRef]
  6. T. M. Monro, C. M. De Sterke, and L. Poladian, J. Opt. Soc. Am. B 13, 2824 (1996).
    [CrossRef]
  7. T. M. Monro, L. Poladian, and C. M. De Sterke, J. Opt. Soc. Am. A 14, 2180 (1997).
    [CrossRef]
  8. T. M. Monro, L. Poladian, and C. M. De Sterke, Phys. Rev. E 57, 1104 (1998).
    [CrossRef]
  9. T. M. Monro, C. M. De Sterke, and L. Poladian, J. Opt. Soc. Am. B 16, 1680 (1999).
    [CrossRef]
  10. T. K. Gustafson, J. P. Taran, H. A. Hauss, J. R. Lifsitz, and P. L. Kelley, Phys. Rev. 111, 306 (1969).
    [CrossRef]

2001

1999

1998

T. M. Monro, L. Poladian, and C. M. De Sterke, Phys. Rev. E 57, 1104 (1998).
[CrossRef]

1997

1996

1995

T. M. Monro, C. M. De Sterke, and L. Poladian, Opt. Commun. 119, 523 (1995).
[CrossRef]

1969

T. K. Gustafson, J. P. Taran, H. A. Hauss, J. R. Lifsitz, and P. L. Kelley, Phys. Rev. 111, 306 (1969).
[CrossRef]

Bachelot, R.

De Sterke, C. M.

Deloeil, D.

Ecoffet, C.

Gustafson, T. K.

T. K. Gustafson, J. P. Taran, H. A. Hauss, J. R. Lifsitz, and P. L. Kelley, Phys. Rev. 111, 306 (1969).
[CrossRef]

Hauss, H. A.

T. K. Gustafson, J. P. Taran, H. A. Hauss, J. R. Lifsitz, and P. L. Kelley, Phys. Rev. 111, 306 (1969).
[CrossRef]

Ito, H.

M. Kagami, T. Yamashita, and H. Ito, Appl. Phys. Lett. 79, 1079 (2001).
[CrossRef]

Kagami, M.

M. Kagami, T. Yamashita, and H. Ito, Appl. Phys. Lett. 79, 1079 (2001).
[CrossRef]

Kelley, P. L.

T. K. Gustafson, J. P. Taran, H. A. Hauss, J. R. Lifsitz, and P. L. Kelley, Phys. Rev. 111, 306 (1969).
[CrossRef]

Kewitsch, S.

S. Kewitsch and A. Yariv, Appl. Phys. Lett. 68, 455 (1996).
[CrossRef]

S. Kewitsch and A. Yariv, Opt. Lett. 21, 24 (1996).
[CrossRef] [PubMed]

Lifsitz, J. R.

T. K. Gustafson, J. P. Taran, H. A. Hauss, J. R. Lifsitz, and P. L. Kelley, Phys. Rev. 111, 306 (1969).
[CrossRef]

Lougnot, D.-J.

Monro, T. M.

Poladian, L.

Royer, P.

Taran, J. P.

T. K. Gustafson, J. P. Taran, H. A. Hauss, J. R. Lifsitz, and P. L. Kelley, Phys. Rev. 111, 306 (1969).
[CrossRef]

Yamashita, T.

M. Kagami, T. Yamashita, and H. Ito, Appl. Phys. Lett. 79, 1079 (2001).
[CrossRef]

Yariv, A.

S. Kewitsch and A. Yariv, Appl. Phys. Lett. 68, 455 (1996).
[CrossRef]

S. Kewitsch and A. Yariv, Opt. Lett. 21, 24 (1996).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

S. Kewitsch and A. Yariv, Appl. Phys. Lett. 68, 455 (1996).
[CrossRef]

M. Kagami, T. Yamashita, and H. Ito, Appl. Phys. Lett. 79, 1079 (2001).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

T. M. Monro, C. M. De Sterke, and L. Poladian, Opt. Commun. 119, 523 (1995).
[CrossRef]

Opt. Lett.

Phys. Rev.

T. K. Gustafson, J. P. Taran, H. A. Hauss, J. R. Lifsitz, and P. L. Kelley, Phys. Rev. 111, 306 (1969).
[CrossRef]

Phys. Rev. E

T. M. Monro, L. Poladian, and C. M. De Sterke, Phys. Rev. E 57, 1104 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Inscription of a unique uniform-channel guide. The power of the light was increased progressively from 0 to 5 µW.

Fig. 2
Fig. 2

Periodic spatial structures of the unique channel observed when the power is raised to 8 µW.

Fig. 3
Fig. 3

Guide displays multiple chaotic channels at 16 µW: the beginning of the chaotic processes.

Fig. 4
Fig. 4

Structure of the medium after intense power light 100 µW. The channels can be observed in both the forward and backward directions.

Fig. 5
Fig. 5

Example of fibers connected by photopolymerization. The fibers were first aligned by a launch system. The connection distance between the fibers was limited to 1 mm because of the microscope aperture.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ik0n0Ez+12ΔtE+k02n0ΔnE+i2k0n0αE=0.
ΔnT/n=0TEE*dT,
Δn/n=E2T.
idE/dZ+12d2E/dY2+TEE*E=0,

Metrics