Abstract

Applying the principle of differential confocal microscopy to wide-field optically sectioning microscopy, we develop a noninterferometric optical profilometer without scanning mechanisms. Depth resolution of 2 nm is achieved with a power-regulated tungsten-halogen lamp as the light source and a 14-bit CCD camera as the detector. The effects of inhomogeneous surface reflectivity are removed from topographic measurements by arithmetic division. The whole system can be constructed on a single silicon chip for use as a miniaturized optical profiler.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For example, the Wyko NT2000 Optical Profiler, produced by the Veeco Metrology Group (Tucson, Ariz.).
  2. L. Deck and P. de Groot, Appl. Opt. 33, 7334 (1994).
    [CrossRef] [PubMed]
  3. C.-H. Lee and J. Wang, Opt. Commun. 135, 233 (1997).
    [CrossRef]
  4. C.-H. Lee, C.-L. Guo, and J. Wang, Opt. Lett. 23, 307 (1998).
    [CrossRef]
  5. M. A. A. Neil, R. Juškaitis, and T. Wilson, Opt. Lett. 22, 1905 (1997).
    [CrossRef]
  6. J. Siegel, D. S. Elson, S. E. D. Webb, D. Parsons-Karavassilis, S. Leveque-Fort, M. J. Cole, M. J. Lever, P. M. W. French, M. A. A. Neil, R. Juškaitis, L. O. Sucharov, and T. Wilson, Opt. Lett. 26, 1338 (2001).
    [CrossRef]
  7. C.-W. Tsai, C.-H. Lee, and J. Wang, Opt. Lett. 24, 1732 (1999).
    [CrossRef]
  8. C.-H. Lee and W.-C. Lin, in Conference on Lasers and Electro-Optics (CLEO 2002), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 33–34.
  9. M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
    [CrossRef]

2002 (1)

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

2001 (1)

1999 (1)

1998 (1)

1997 (2)

1994 (1)

Anslyn, E. V.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Cole, M. J.

de Groot, P.

Deck, L.

Descour, M. R.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Dupuis, R. D.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Elson, D. S.

French, P. M. W.

Guo, C.-L.

Juškaitis, R.

Karkkainen, A. H. O.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Kilic, B.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Lee, C.-H.

C.-W. Tsai, C.-H. Lee, and J. Wang, Opt. Lett. 24, 1732 (1999).
[CrossRef]

C.-H. Lee, C.-L. Guo, and J. Wang, Opt. Lett. 23, 307 (1998).
[CrossRef]

C.-H. Lee and J. Wang, Opt. Commun. 135, 233 (1997).
[CrossRef]

C.-H. Lee and W.-C. Lin, in Conference on Lasers and Electro-Optics (CLEO 2002), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 33–34.

Leveque-Fort, S.

Lever, M. J.

Liang, C.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Lin, W.-C.

C.-H. Lee and W.-C. Lin, in Conference on Lasers and Electro-Optics (CLEO 2002), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 33–34.

Madenci, E.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Neil, M. A. A.

Parsons-Karavassilis, D.

Rantala, J. T.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Richards-Kortum, R. R.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Rogers, J. D.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Schul, R. J.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Siegel, J.

Sucharov, L. O.

Tigges, C. P.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Tsai, C.-W.

Wang, J.

Webb, S. E. D.

Weinstein, R. S.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Willison, C. G.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Wilson, T.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Opt. Commun. (1)

C.-H. Lee and J. Wang, Opt. Commun. 135, 233 (1997).
[CrossRef]

Opt. Lett. (4)

Other (2)

C.-H. Lee and W.-C. Lin, in Conference on Lasers and Electro-Optics (CLEO 2002), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 33–34.

For example, the Wyko NT2000 Optical Profiler, produced by the Veeco Metrology Group (Tucson, Ariz.).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: PZTs, piezoelectric transducers.

Fig. 2
Fig. 2

Measured linear regions of the axial response curves with different values of γ: (a) NA, 0.95; γ=1.1; depth resolution, 2 nm; dynamic range, 0.19 µm. (b) NA, 0.85; γ=0.82; depth resolution, 6 nm; dynamic range, 0.54 µm. (c) NA, 0.85; γ=0.54; depth resolution, 11 nm; dynamic range, 1.02 µm. Inset, measured axial response curve. The segment enclosed by a rectangle represents the working region.

Fig. 3
Fig. 3

(a) Three-dimensional surface topography of a trench etched in InGaAs. (b) Profile along the dashed line in (a). Dark curve, results obtained with the wide-field optical profiler; light curve, results obtained with an atomic-force microscope.

Fig. 4
Fig. 4

Images and profile of the surface of quartz with antireflection coating. (a) If, image acquired on the focal plane, showing that there is no antireflection coating inside the circle. Is, image acquired in the linear region. T, three-dimensional topography of the coated quartz. Diffraction at the steplike discontinuity leads to signal overshoot. (b) Profile along the dashed line in (a).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δz=ΔIdI/dz-1,
Iζ=2J1ζ/ζ,
Tx,y=Isx,y/Ifx,y,

Metrics