Abstract

We described a method for direct holographic comparison of the shape or the deformation of two objects when it is not necessary that both samples be located at the same place. In contrast to the well-known incoherent techniques based on inverse fringe projection, this new approach uses a coherent mask that is imaged onto a sample object that has a microstructure different from that of the master object. The coherent mask is created by digital holography to permit instant access to complete optical information on the master object at any wanted place. Transmission of the digital master holograms to the relevant places can be made with a broadband digital telecommunication network such as the Internet.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Schwider and G. Schulz, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1976), pp. 93–167.
  2. K. Birch, J. Phys. E 6, 1045 (1973).
    [CrossRef]
  3. T. Dresel, J. Schwider, A. Wehrhahn, and S. Babin, Opt. Eng. 34, 3531 (1995).
    [CrossRef]
  4. P. Rastogi, Appl. Opt. 23, 924 (1984).
    [CrossRef]
  5. E. Simova and V. Sainov, Opt. Eng. 28, 261 (1989).
    [CrossRef]
  6. D. B. Neumann, in Digest of Topical Meeting on Hologram Interferometry and Speckle Metrology (Optical Society of America, Washington, D.C., 1980), paper MB2.
  7. Z. Füzessy and F. Gyímesi, Opt. Eng. 23, 780 (1984).
  8. U. Schnars, J. Opt. Soc. Am. A 11, 2011 (1994).
    [CrossRef]
  9. W. Osten, in Proceedings of the International Berlin Workshop HoloMet 2000 (Bremen Institute of Applied Beam Technology, Bremen, Germany, 2000), Vol. 14, pp. 14–17.
  10. J. E. Sollid, Appl. Opt. 8, 1587 (1969).
    [CrossRef] [PubMed]
  11. W. Osten, T. Baumbach, and W. Jüptner, Proc. SPIE 4596, 158 (2001).
    [CrossRef]
  12. B. P. Hildebrand and K. A. Haines, J. Opt. Soc. Am. 57, 155 (1967).

2001 (1)

W. Osten, T. Baumbach, and W. Jüptner, Proc. SPIE 4596, 158 (2001).
[CrossRef]

1995 (1)

T. Dresel, J. Schwider, A. Wehrhahn, and S. Babin, Opt. Eng. 34, 3531 (1995).
[CrossRef]

1994 (1)

1989 (1)

E. Simova and V. Sainov, Opt. Eng. 28, 261 (1989).
[CrossRef]

1984 (2)

Z. Füzessy and F. Gyímesi, Opt. Eng. 23, 780 (1984).

P. Rastogi, Appl. Opt. 23, 924 (1984).
[CrossRef]

1973 (1)

K. Birch, J. Phys. E 6, 1045 (1973).
[CrossRef]

1969 (1)

1967 (1)

Babin, S.

T. Dresel, J. Schwider, A. Wehrhahn, and S. Babin, Opt. Eng. 34, 3531 (1995).
[CrossRef]

Baumbach, T.

W. Osten, T. Baumbach, and W. Jüptner, Proc. SPIE 4596, 158 (2001).
[CrossRef]

Birch, K.

K. Birch, J. Phys. E 6, 1045 (1973).
[CrossRef]

Dresel, T.

T. Dresel, J. Schwider, A. Wehrhahn, and S. Babin, Opt. Eng. 34, 3531 (1995).
[CrossRef]

Füzessy, Z.

Z. Füzessy and F. Gyímesi, Opt. Eng. 23, 780 (1984).

Gyímesi, F.

Z. Füzessy and F. Gyímesi, Opt. Eng. 23, 780 (1984).

Haines, K. A.

Hildebrand, B. P.

Jüptner, W.

W. Osten, T. Baumbach, and W. Jüptner, Proc. SPIE 4596, 158 (2001).
[CrossRef]

Neumann, D. B.

D. B. Neumann, in Digest of Topical Meeting on Hologram Interferometry and Speckle Metrology (Optical Society of America, Washington, D.C., 1980), paper MB2.

Osten, W.

W. Osten, T. Baumbach, and W. Jüptner, Proc. SPIE 4596, 158 (2001).
[CrossRef]

W. Osten, in Proceedings of the International Berlin Workshop HoloMet 2000 (Bremen Institute of Applied Beam Technology, Bremen, Germany, 2000), Vol. 14, pp. 14–17.

Rastogi, P.

Sainov, V.

E. Simova and V. Sainov, Opt. Eng. 28, 261 (1989).
[CrossRef]

Schnars, U.

Schulz, G.

J. Schwider and G. Schulz, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1976), pp. 93–167.

Schwider, J.

T. Dresel, J. Schwider, A. Wehrhahn, and S. Babin, Opt. Eng. 34, 3531 (1995).
[CrossRef]

J. Schwider and G. Schulz, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1976), pp. 93–167.

Simova, E.

E. Simova and V. Sainov, Opt. Eng. 28, 261 (1989).
[CrossRef]

Sollid, J. E.

Wehrhahn, A.

T. Dresel, J. Schwider, A. Wehrhahn, and S. Babin, Opt. Eng. 34, 3531 (1995).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. E (1)

K. Birch, J. Phys. E 6, 1045 (1973).
[CrossRef]

Opt. Eng. (3)

T. Dresel, J. Schwider, A. Wehrhahn, and S. Babin, Opt. Eng. 34, 3531 (1995).
[CrossRef]

E. Simova and V. Sainov, Opt. Eng. 28, 261 (1989).
[CrossRef]

Z. Füzessy and F. Gyímesi, Opt. Eng. 23, 780 (1984).

Proc. SPIE (1)

W. Osten, T. Baumbach, and W. Jüptner, Proc. SPIE 4596, 158 (2001).
[CrossRef]

Other (3)

J. Schwider and G. Schulz, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1976), pp. 93–167.

W. Osten, in Proceedings of the International Berlin Workshop HoloMet 2000 (Bremen Institute of Applied Beam Technology, Bremen, Germany, 2000), Vol. 14, pp. 14–17.

D. B. Neumann, in Digest of Topical Meeting on Hologram Interferometry and Speckle Metrology (Optical Society of America, Washington, D.C., 1980), paper MB2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic representation of the paths of light: (a) recording of the coherent mask, (b) comparison of the master with the test object.

Fig. 2
Fig. 2

Schematic of the experimental setup for comparative digital holography: (a) location A, recording of the coherent mask; (b) location B, coherent illumination of the sample with the conjugated wave front of the master.

Fig. 3
Fig. 3

Shape comparison between a master and a sample object: (a) master object (aluminum cylinder with a cone; diameter, 10 mm), (b) sample object (same macroscopic shape, different microstructure, and two marked dents), (c) mod 2π contour lines of the sample object, (d) mod 2π difference phase of the sample object as a result of coherent illumination with the real image of the master object.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ1P=2πλeˆB1P-eˆQ1P·d1P=2πλSP·d1P.
eˆQ2P=-eˆB1P,
eˆB2P=-eˆQ1P,
δ2P=2πλeˆB2P-eˆQ2P·d2P=2πλeˆB1P-eˆQ1P·d2P.
δP=δ1P-δ2P=2πλeˆB1P-eˆQ1P·d1P-d2P.
δiP=2π/ΛSi·ΔriP,  i=1,2,
Λ=λ1λ2λ1-λ2,
δP=δ1P-δ2P=2πΛSΔr1P-Δr2P.

Metrics