Abstract

We have written polarization reflection holograms in an azobenzene-containing material. Two waves with circular polarization were used to record the gratings; the light resulting from their overlap induces chirality in the samples. The holographic reflection of the polarization gratings has the properties of Bragg reflection in cholesteric liquid crystals.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Todorov, L. Nikolova, and T. Tomova, “Polarization holography. 1: A new high-efficiency organic material and reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [CrossRef] [PubMed]
  2. M. Eich and J. H. Wendorff, “Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers,” J. Opt. Soc. Am. B 7, 1428–1436 (1990).
    [CrossRef]
  3. S. Hvilsted, F. Andruzzi, and P. S. Ramanujam, “Side-chain liquid-crystalline polyesters for optical information storage” Opt. Lett. 17, 1234–1236 (1992).
    [CrossRef] [PubMed]
  4. A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azopolymers for reversible optical storage. 1. Poly[4′–[[2-(acryloyoxy) ethyl]ethylamino]–2–chloro-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
    [CrossRef]
  5. R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic storage,” Nature 383, 505–509 (1996).
    [CrossRef]
  6. N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “10,000 optical write, read, and erasure cycles in an azobenzene side-chain liquid-crystalline polyester,” Opt. Lett. 21, 902–904 (1996).
    [CrossRef] [PubMed]
  7. H. J. Eichler, S. Orlic, R. Shulz, and J. Rubner, “Holographic reflection gratings in azobenezene polymers,” Opt. Lett. 26, 581–583 (2001).
    [CrossRef]
  8. M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Photoinduced dichroism and birefringence in films of Mordant Pure Yellow/poly(vinyl alcohol): similtaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
    [CrossRef]
  9. L. Nikolova and P. Sharlandjiev, “Holographic reflection gratings in photoanisotropic materials,” in International Conference on Holography, Optical Recording, and Processing of Information, I. N. Denisyuk and T. H. Geong, eds., Proc. SPIE1183, 260–267 (1990).
  10. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

2001

1996

1994

M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Photoinduced dichroism and birefringence in films of Mordant Pure Yellow/poly(vinyl alcohol): similtaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
[CrossRef]

1992

S. Hvilsted, F. Andruzzi, and P. S. Ramanujam, “Side-chain liquid-crystalline polyesters for optical information storage” Opt. Lett. 17, 1234–1236 (1992).
[CrossRef] [PubMed]

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azopolymers for reversible optical storage. 1. Poly[4′–[[2-(acryloyoxy) ethyl]ethylamino]–2–chloro-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

1990

1984

Andruzzi, F.

Berg, R. H.

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic storage,” Nature 383, 505–509 (1996).
[CrossRef]

de Gennes, P. G.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

Dragostinova, V.

M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Photoinduced dichroism and birefringence in films of Mordant Pure Yellow/poly(vinyl alcohol): similtaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
[CrossRef]

Eich, M.

Eichler, H. J.

Gosselin, J.

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azopolymers for reversible optical storage. 1. Poly[4′–[[2-(acryloyoxy) ethyl]ethylamino]–2–chloro-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

Holme, N. C. R.

Hvilsted, S.

Ivanov, M.

M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Photoinduced dichroism and birefringence in films of Mordant Pure Yellow/poly(vinyl alcohol): similtaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
[CrossRef]

Natansohn, A.

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azopolymers for reversible optical storage. 1. Poly[4′–[[2-(acryloyoxy) ethyl]ethylamino]–2–chloro-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

Nikolova, L.

M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Photoinduced dichroism and birefringence in films of Mordant Pure Yellow/poly(vinyl alcohol): similtaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
[CrossRef]

T. Todorov, L. Nikolova, and T. Tomova, “Polarization holography. 1: A new high-efficiency organic material and reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

L. Nikolova and P. Sharlandjiev, “Holographic reflection gratings in photoanisotropic materials,” in International Conference on Holography, Optical Recording, and Processing of Information, I. N. Denisyuk and T. H. Geong, eds., Proc. SPIE1183, 260–267 (1990).

Orlic, S.

Prost, J.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

Ramanujam, P. S.

Rochon, P.

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azopolymers for reversible optical storage. 1. Poly[4′–[[2-(acryloyoxy) ethyl]ethylamino]–2–chloro-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

Rubner, J.

Sharlandjiev, P.

L. Nikolova and P. Sharlandjiev, “Holographic reflection gratings in photoanisotropic materials,” in International Conference on Holography, Optical Recording, and Processing of Information, I. N. Denisyuk and T. H. Geong, eds., Proc. SPIE1183, 260–267 (1990).

Shulz, R.

Todorov, T.

M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Photoinduced dichroism and birefringence in films of Mordant Pure Yellow/poly(vinyl alcohol): similtaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
[CrossRef]

T. Todorov, L. Nikolova, and T. Tomova, “Polarization holography. 1: A new high-efficiency organic material and reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

Tomova, N.

M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Photoinduced dichroism and birefringence in films of Mordant Pure Yellow/poly(vinyl alcohol): similtaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
[CrossRef]

Tomova, T.

Wendorff, J. H.

Xie, S.

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azopolymers for reversible optical storage. 1. Poly[4′–[[2-(acryloyoxy) ethyl]ethylamino]–2–chloro-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am. B

Macromolecules

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azopolymers for reversible optical storage. 1. Poly[4′–[[2-(acryloyoxy) ethyl]ethylamino]–2–chloro-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

Nature

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic storage,” Nature 383, 505–509 (1996).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Photoinduced dichroism and birefringence in films of Mordant Pure Yellow/poly(vinyl alcohol): similtaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
[CrossRef]

Other

L. Nikolova and P. Sharlandjiev, “Holographic reflection gratings in photoanisotropic materials,” in International Conference on Holography, Optical Recording, and Processing of Information, I. N. Denisyuk and T. H. Geong, eds., Proc. SPIE1183, 260–267 (1990).

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Time evolution of the signal at D during the experiment.

Fig. 3
Fig. 3

Dependence of the grating diffraction efficiency on the ellipticity of the reconstructing beam.

Fig. 4
Fig. 4

Dependence of the grating diffraction efficiency on the polarization direction, α, of a linearly polarized reconstructing beam.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R=r1-i-i-1,

Metrics