Abstract

We present a scheme to produce programmable phase- and amplitude-modulated femtosecond laser pulses in the mid-infrared regime of 310 µm by difference frequency mixing. The 80-fs signal output of an optical parametric amplifier is shaped with a liquid-crystal mask and mixed in an AgGaS2 crystal with a temporally stretched idler pulse. Without changing the mechanical alignment, we produce programmable amplitude modulations and chirped pulses at λ=3 µm with energy as high has thas 1 µJ. This scheme, further, allows the generation of controllable pulse sequences. The results are in good agreement with theoretical simulations.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
    [CrossRef] [PubMed]
  2. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  3. M. M. Wefers and K. A. Nelson, J. Opt. Soc. Am. B 12, 1343 (1995).
    [CrossRef]
  4. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
    [CrossRef] [PubMed]
  5. S. Chelbowski, A. D. Bandrauk, and P. B. Corkum, Phys. Rev. Lett. 65, 2355 (1990).
    [CrossRef]
  6. D. J. Maas, M. J. J. Vrakking, and L. D. Noordam, Chem. Phys. Lett. 290, 75 (1998).
  7. V. D. Kleinman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, Chem. Phys. 233, 207 (1998).
  8. See, for instance, P. Hamm, R. A. Kaindl, and J. Stenger, Opt. Lett. 25, 1798 (2000).
    [CrossRef]
  9. J. X. Tull, M. A. Dugen, and W. S. Warren, Adv. Magn. Opt. Reson. 20, 1 (1997).
    [CrossRef]
  10. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
    [CrossRef]
  11. F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, Opt. Lett. 25, 1472 (2000).
    [CrossRef]
  12. N. Belabas, J. P. Likforman, L. Canioni, B. Bousquet, and M. Joffre, Opt. Lett. 26, 743 (2001).
    [CrossRef]
  13. The mask was calibrated at 1.29 µm. The net overall phase shift amounts to 12π. Our setup features cylindrical mirrors to ensure wavelength-independent imaging, and we keep the offset angles at 15° to minimize imaging aberrations. There is a C–H overtone excitation of the liquid crystals at 1.26 µm, which may give rise to heating and nonlinear processes through a temperature-dependent index of refraction. These effects will not, in principle, bring into question the results that are presented.
  14. B. A. Richman, M. A. Krumbugel, and R. Trebino, Opt. Lett. 22, 721 (1997).
    [CrossRef] [PubMed]
  15. See, for instance, Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  16. V. D. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer, New York, 1997).
    [CrossRef]
  17. SNLO Nonlinear Optics Code, available from A. V. Smith, Sandia National Laboratories, Albuquerque, N.M. 87185-1435.
  18. B. Schmidt, G. Stobrawa, M. Hacker, and T. Feurer, Lab2 Femtosecond Simulation Package, Institute for Optics and Quantumelectronics, Universität Jena.

2001 (1)

2000 (5)

1998 (3)

D. J. Maas, M. J. J. Vrakking, and L. D. Noordam, Chem. Phys. Lett. 290, 75 (1998).

V. D. Kleinman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, Chem. Phys. 233, 207 (1998).

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

1997 (2)

J. X. Tull, M. A. Dugen, and W. S. Warren, Adv. Magn. Opt. Reson. 20, 1 (1997).
[CrossRef]

B. A. Richman, M. A. Krumbugel, and R. Trebino, Opt. Lett. 22, 721 (1997).
[CrossRef] [PubMed]

1995 (1)

1990 (1)

S. Chelbowski, A. D. Bandrauk, and P. B. Corkum, Phys. Rev. Lett. 65, 2355 (1990).
[CrossRef]

Arrivo, S. M.

V. D. Kleinman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, Chem. Phys. 233, 207 (1998).

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Bandrauk, A. D.

S. Chelbowski, A. D. Bandrauk, and P. B. Corkum, Phys. Rev. Lett. 65, 2355 (1990).
[CrossRef]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Belabas, N.

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Bousquet, B.

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Canioni, L.

Chelbowski, S.

S. Chelbowski, A. D. Bandrauk, and P. B. Corkum, Phys. Rev. Lett. 65, 2355 (1990).
[CrossRef]

Corkum, P. B.

S. Chelbowski, A. D. Bandrauk, and P. B. Corkum, Phys. Rev. Lett. 65, 2355 (1990).
[CrossRef]

de Vivie-Riedle, R.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Dmitriev, V. D.

V. D. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer, New York, 1997).
[CrossRef]

Dugen, M. A.

J. X. Tull, M. A. Dugen, and W. S. Warren, Adv. Magn. Opt. Reson. 20, 1 (1997).
[CrossRef]

Eickemeyer, F.

Elsaesser, T.

Feurer, T.

B. Schmidt, G. Stobrawa, M. Hacker, and T. Feurer, Lab2 Femtosecond Simulation Package, Institute for Optics and Quantumelectronics, Universität Jena.

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Gurzadyan, G. G.

V. D. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer, New York, 1997).
[CrossRef]

Hacker, M.

B. Schmidt, G. Stobrawa, M. Hacker, and T. Feurer, Lab2 Femtosecond Simulation Package, Institute for Optics and Quantumelectronics, Universität Jena.

Hamm, P.

Heilweil, E. J.

V. D. Kleinman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, Chem. Phys. 233, 207 (1998).

Joffre, M.

Kaindl, R. A.

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Kleinman, V. D.

V. D. Kleinman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, Chem. Phys. 233, 207 (1998).

Kompa, K.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Krumbugel, M. A.

Likforman, J. P.

Maas, D. J.

D. J. Maas, M. J. J. Vrakking, and L. D. Noordam, Chem. Phys. Lett. 290, 75 (1998).

Melinger, J. S.

V. D. Kleinman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, Chem. Phys. 233, 207 (1998).

Motzkus, M.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Nelson, K. A.

Nikogosyan, D. N.

V. D. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer, New York, 1997).
[CrossRef]

Noordam, L. D.

D. J. Maas, M. J. J. Vrakking, and L. D. Noordam, Chem. Phys. Lett. 290, 75 (1998).

Rabitz, H.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Reimann, K.

Richman, B. A.

Schmidt, B.

B. Schmidt, G. Stobrawa, M. Hacker, and T. Feurer, Lab2 Femtosecond Simulation Package, Institute for Optics and Quantumelectronics, Universität Jena.

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Shen, Y. R.

See, for instance, Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Smith, A. V.

SNLO Nonlinear Optics Code, available from A. V. Smith, Sandia National Laboratories, Albuquerque, N.M. 87185-1435.

Stenger, J.

Stobrawa, G.

B. Schmidt, G. Stobrawa, M. Hacker, and T. Feurer, Lab2 Femtosecond Simulation Package, Institute for Optics and Quantumelectronics, Universität Jena.

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Trebino, R.

Tull, J. X.

J. X. Tull, M. A. Dugen, and W. S. Warren, Adv. Magn. Opt. Reson. 20, 1 (1997).
[CrossRef]

Vrakking, M. J. J.

D. J. Maas, M. J. J. Vrakking, and L. D. Noordam, Chem. Phys. Lett. 290, 75 (1998).

Warren, W. S.

J. X. Tull, M. A. Dugen, and W. S. Warren, Adv. Magn. Opt. Reson. 20, 1 (1997).
[CrossRef]

Wefers, M. M.

Weiner, A. M.

Woerner, M.

Wurm, M.

Adv. Magn. Opt. Reson. (1)

J. X. Tull, M. A. Dugen, and W. S. Warren, Adv. Magn. Opt. Reson. 20, 1 (1997).
[CrossRef]

Chem. Phys. (1)

V. D. Kleinman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, Chem. Phys. 233, 207 (1998).

Chem. Phys. Lett. (1)

D. J. Maas, M. J. J. Vrakking, and L. D. Noordam, Chem. Phys. Lett. 290, 75 (1998).

J. Opt. Soc. Am. B (2)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

S. Chelbowski, A. D. Bandrauk, and P. B. Corkum, Phys. Rev. Lett. 65, 2355 (1990).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Science (2)

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Other (5)

See, for instance, Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

V. D. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer, New York, 1997).
[CrossRef]

SNLO Nonlinear Optics Code, available from A. V. Smith, Sandia National Laboratories, Albuquerque, N.M. 87185-1435.

B. Schmidt, G. Stobrawa, M. Hacker, and T. Feurer, Lab2 Femtosecond Simulation Package, Institute for Optics and Quantumelectronics, Universität Jena.

The mask was calibrated at 1.29 µm. The net overall phase shift amounts to 12π. Our setup features cylindrical mirrors to ensure wavelength-independent imaging, and we keep the offset angles at 15° to minimize imaging aberrations. There is a C–H overtone excitation of the liquid crystals at 1.26 µm, which may give rise to heating and nonlinear processes through a temperature-dependent index of refraction. These effects will not, in principle, bring into question the results that are presented.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of the experimental setup: FMs, focusing mirrors, f = 300   mm ; grating,  1 / d = 400   lines / mm ; Mask, CRI SLM-256 MIR; L1, CaF 2 lens f = 250   mm ; L2, BaF lens f = 250   mm ; F, long-pass filter; AgGaS 2 , 1-mm crystal (type II, cut at 50°).

Fig. 2
Fig. 2

Transfer of amplitude modulation. Top row: signal pulse with amplitude modulation (solid curve) and zero phase (squares, left), amplitude modulation and π phase jump (center), π phase jump only (right). Bottom row: experimental (solid curve) and calculated (circles) MIR spectra.

Fig. 3
Fig. 3

Transfer of phase modulation. A, MIR AC for zero signal phase (solid curve), positive quadratic signal phase (dashed curves), and negative quadratic signal phase (dotted curves). Right: SHG-FROG-retrieved intensity and phase for B, nonchirped and C, positively chirped ( - 18 × 10 3   fs 2 ; squares) MIR pulses.

Fig. 4
Fig. 4

Transfer of pulse sequences. A, signal (top) and corresponding MIR (bottom) AC of double pulses of adjustable time separation. B, SHG-FROG-retrieved time-dependent intensity of one double pulse. C, Experimental (solid) and calculated (dotted) MIR ACs of a triple-pulse sequence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z E ˜ D ω D ω S 0 - Δ ω ω S 0 + Δ ω E ˜ S * ω S E ˜ I ω S - ω D exp i Δ k d ω S .

Metrics