Abstract

We demonstrate optical data storage in optical fibers and reconstruction by use of low-coherence spectral interferometry. The information was stored by means of writing fiber Bragg gratings with different central wavelengths at different locations of the fiber. We need only a single short pulse is needed to read all the stored data. The maximum theoretical reconstruction rate that can be obtained with our technique is 10 Tbits/s. Our storage technique can be useful for identifying users in optical communication networks.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. R. Chen, S. D. Benjamin, P. W. E. Smith, J. E. Sipe, and S. Juma, Opt. Lett. 22, 402 (1997).
    [CrossRef] [PubMed]
  2. G. E. Town, K. Chan, and G. Yoffe, IEEE J. Sel. Top. Quantum Electron. 5, 1325 (1999).
    [CrossRef]
  3. D. B. Hunter and R. A. Minasian, Electron. Lett. 35, 412 (1999).
    [CrossRef]
  4. J. S. Wey, D. L. Butler, N. W. Rush, G. L. Burdge, and J. Goldhar, Opt. Lett. 22, 1757 (1997).
    [CrossRef]
  5. S. Keren and M. Horowitz, Opt. Lett. 26, 328 (2001).
    [CrossRef]
  6. S. R. Chinn and E. A. Swanson, Opt. Mem. Neural Netw. 5, 197 (1996).
  7. D. Gabor, J. Inst. Electr. Eng. Part 3 93, 429 (1946).
  8. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  9. M. Horowitz, Y. Barad, and Y. Silberberg, Opt. Lett. 22, 799 (1997).
    [CrossRef] [PubMed]
  10. M. L. Dennis, M. A. Putnam, J. U. Kang, T. E. Tsai, I. N. Duling, and E. J. Friebele, Opt. Lett. 22, 1362 (1997).
    [CrossRef]

2001 (1)

1999 (2)

G. E. Town, K. Chan, and G. Yoffe, IEEE J. Sel. Top. Quantum Electron. 5, 1325 (1999).
[CrossRef]

D. B. Hunter and R. A. Minasian, Electron. Lett. 35, 412 (1999).
[CrossRef]

1997 (5)

1996 (1)

S. R. Chinn and E. A. Swanson, Opt. Mem. Neural Netw. 5, 197 (1996).

1946 (1)

D. Gabor, J. Inst. Electr. Eng. Part 3 93, 429 (1946).

Barad, Y.

Benjamin, S. D.

Burdge, G. L.

Butler, D. L.

Chan, K.

G. E. Town, K. Chan, and G. Yoffe, IEEE J. Sel. Top. Quantum Electron. 5, 1325 (1999).
[CrossRef]

Chen, L. R.

Chinn, S. R.

S. R. Chinn and E. A. Swanson, Opt. Mem. Neural Netw. 5, 197 (1996).

Dennis, M. L.

Duling, I. N.

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Friebele, E. J.

Gabor, D.

D. Gabor, J. Inst. Electr. Eng. Part 3 93, 429 (1946).

Goldhar, J.

Horowitz, M.

Hunter, D. B.

D. B. Hunter and R. A. Minasian, Electron. Lett. 35, 412 (1999).
[CrossRef]

Juma, S.

Kang, J. U.

Keren, S.

Minasian, R. A.

D. B. Hunter and R. A. Minasian, Electron. Lett. 35, 412 (1999).
[CrossRef]

Putnam, M. A.

Rush, N. W.

Silberberg, Y.

Sipe, J. E.

Smith, P. W. E.

Swanson, E. A.

S. R. Chinn and E. A. Swanson, Opt. Mem. Neural Netw. 5, 197 (1996).

Town, G. E.

G. E. Town, K. Chan, and G. Yoffe, IEEE J. Sel. Top. Quantum Electron. 5, 1325 (1999).
[CrossRef]

Tsai, T. E.

Wey, J. S.

Yoffe, G.

G. E. Town, K. Chan, and G. Yoffe, IEEE J. Sel. Top. Quantum Electron. 5, 1325 (1999).
[CrossRef]

Electron. Lett. (1)

D. B. Hunter and R. A. Minasian, Electron. Lett. 35, 412 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. E. Town, K. Chan, and G. Yoffe, IEEE J. Sel. Top. Quantum Electron. 5, 1325 (1999).
[CrossRef]

J. Inst. Electr. Eng. Part 3 (1)

D. Gabor, J. Inst. Electr. Eng. Part 3 93, 429 (1946).

J. Lightwave Technol. (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Opt. Lett. (5)

Opt. Mem. Neural Netw. (1)

S. R. Chinn and E. A. Swanson, Opt. Mem. Neural Netw. 5, 197 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup and the multiple-grating structure written in the fiber.

Fig. 2
Fig. 2

Measured interference spectrum, normalized by the spectrum of the light source, used to reconstruct the information shown in Fig. 3.

Fig. 3
Fig. 3

Reconstructed data measured for two different data codes stored in the fiber. The black regions represent the points in the Gabor transform that have an intensity above a threshold as a function of the wavelength, λ, and the location along the fiber, z.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Gt,Ω=-IωWω-Ωexp-iωtdω,

Metrics