Abstract

The relationship between the depth of a target in a turbid medium and the fluorescence ratio profile measured by use of illumination and collection apertures with variable diameters and the same optical path is shown. The forward problem was studied by Monte Carlo simulations of the propagation of fluorescent light through a theoretical model of a biologically relevant system for a range of aperture diameters. The curve of the fluorescence ratio as a function of the aperture diameter is characterized by a maximum/minimum point whose position shifts linearly with the depth of the target. Furthermore, the position of the maximum/minimum is observed to be insensitive to variations in the fluorescence efficiency and to the optical properties of the target layer or the entire medium.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue

Yicong Wu, Peng Xi, Jianan Y. Qu, Tak-Hong Cheung, and Mei-Yung Yu
Opt. Express 13(2) 382-388 (2005)

In vivo multimodal nonlinear optical imaging of mucosal tissue

Ju Sun, Tuya Shilagard, Brent Bell, Massoud Motamedi, and Gracie Vargas
Opt. Express 12(11) 2478-2486 (2004)

In vivo layer-resolved characterization of oral dysplasia via nonlinear optical micro-spectroscopy

Kert Edward, Suimin Qiu, Vicente Resto, Susan McCammon, and Gracie Vargas
Biomed. Opt. Express 3(7) 1579-1593 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription