Abstract

Pulses as short as 9 fs at 220-mW average power and a 97-MHz repetition rate are generated from a cw Ti:sapphire-pumped Kerr-lens mode-locked Cr3+:LiCAF laser oscillator employing broadband double-chirped mirrors for second- and third-order dispersion compensation. Fine adjustment of dispersion is accomplished with a fused-silica prism pair. The result demonstrates that Raman-induced self-frequency shifting of the pulse does not limit sub-10-fs pulse generation from colquiriite crystals.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Uemura and K. Torizuka, Jpn. J. Appl. Phys. 39, 3472 (2000).
    [Crossref]
  2. I. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jensen, and R. Szipöcs, Opt. Lett. 22, 1716 (1997).
    [Crossref]
  3. K. M. Gäbel, P. Russbüldt, R. Lebert, and A. Valster, Opt. Commun. 157, 327 (1998).
    [Crossref]
  4. H. A. Haus, I. Sorokina, and E. Sorokin, J. Opt. Soc. Am. B 15, 223 (1998).
    [Crossref]
  5. I. Sorokina, E. Sorokin, and E. Wintner, in Advanced Solid State Lasers, Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 359–362.
  6. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, Opt. Lett. 22, 831 (1997).
    [Crossref]
  7. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, Opt. Lett. 26, 373 (2001).
    [Crossref]
  8. B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, J. Opt. Soc. Am. B 8, 970 (1991).
    [Crossref]
  9. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, J. Opt. Soc. Am. B 18, 882 (2001).
    [Crossref]
  10. Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, J. Opt. Soc. Am. B 16, 1999 (1999).
    [Crossref]

2001 (2)

2000 (1)

S. Uemura and K. Torizuka, Jpn. J. Appl. Phys. 39, 3472 (2000).
[Crossref]

1999 (1)

1998 (2)

K. M. Gäbel, P. Russbüldt, R. Lebert, and A. Valster, Opt. Commun. 157, 327 (1998).
[Crossref]

H. A. Haus, I. Sorokina, and E. Sorokin, J. Opt. Soc. Am. B 15, 223 (1998).
[Crossref]

1997 (2)

1991 (1)

Angelow, G.

Boiko, A.

Cassanho, A.

Chen, Y.

Cho, S. H.

Davis, L. E.

Ell, R.

Fujimoto, J. G.

Gäbel, K. M.

K. M. Gäbel, P. Russbüldt, R. Lebert, and A. Valster, Opt. Commun. 157, 327 (1998).
[Crossref]

Haus, H. A.

Heine, C.

Hughes, R. S.

Ippen, E. P.

Jensen, H. P.

Kärtner, F. X.

Keller, U.

Lebert, R.

K. M. Gäbel, P. Russbüldt, R. Lebert, and A. Valster, Opt. Commun. 157, 327 (1998).
[Crossref]

Lederer, M. J.

Luther-Davies, B.

Marion, J. E.

Matuschek, N.

Morf, R.

Morgner, U.

Payne, S. A.

Russbüldt, P.

K. M. Gäbel, P. Russbüldt, R. Lebert, and A. Valster, Opt. Commun. 157, 327 (1998).
[Crossref]

Scheuer, V.

Schibli, T.

Sorokin, E.

H. A. Haus, I. Sorokina, and E. Sorokin, J. Opt. Soc. Am. B 15, 223 (1998).
[Crossref]

I. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jensen, and R. Szipöcs, Opt. Lett. 22, 1716 (1997).
[Crossref]

I. Sorokina, E. Sorokin, and E. Wintner, in Advanced Solid State Lasers, Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 359–362.

Sorokina, I.

H. A. Haus, I. Sorokina, and E. Sorokin, J. Opt. Soc. Am. B 15, 223 (1998).
[Crossref]

I. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jensen, and R. Szipöcs, Opt. Lett. 22, 1716 (1997).
[Crossref]

I. Sorokina, E. Sorokin, and E. Wintner, in Advanced Solid State Lasers, Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 359–362.

Szipöcs, R.

Tilsch, M.

Torizuka, K.

S. Uemura and K. Torizuka, Jpn. J. Appl. Phys. 39, 3472 (2000).
[Crossref]

Tschudi, T.

Uemura, S.

S. Uemura and K. Torizuka, Jpn. J. Appl. Phys. 39, 3472 (2000).
[Crossref]

Valster, A.

K. M. Gäbel, P. Russbüldt, R. Lebert, and A. Valster, Opt. Commun. 157, 327 (1998).
[Crossref]

Wintner, E.

I. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jensen, and R. Szipöcs, Opt. Lett. 22, 1716 (1997).
[Crossref]

I. Sorokina, E. Sorokin, and E. Wintner, in Advanced Solid State Lasers, Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 359–362.

Woods, B. W.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the femtosecond oscillator. The cavity is a 97-MHz standard z-folded cavity with 75-mm folding mirrors. Five DCM reflections are used to compensate for the second- and third-order dispersion of the laser crystal. The laser can be mode locked with or without prisms. The shortest pulses are generated with the 350-mm separated fused-silica prism sequence with a GDD of approximately +20 fs2 at 850 nm.

Fig. 2
Fig. 2

(a) Reflectivity of the laser mirrors. (b) GDD of the laser crystal (double pass, 5% doping, measured), of five DCM reflections (measured), of the prism sequence (calculated), and the sum. The DCMs compensate for second- and third-order dispersion of the Cr:LiCAF crystal with residual dispersion oscillations.

Fig. 3
Fig. 3

Spectrum and interferometric autocorrelation trace of the shortest pulses generated from the Cr3+:LiCAF oscillator. The peak at 693 nm in (a) is from the pump. The mode-locked spectrum supports Fourier-limited 7.9-fs pulses. The IAC was reconstructed by a phase-retrieval algorithm [indistinguishable in (b)]. The fit indicates a pulse duration of 8.9 fs.

Fig. 4
Fig. 4

Change in the mode-locked spectrum with variation of intracavity GDD by means of prism insertion. At negative GDD the spectrum is determined by soliton mode locking. Near zero average GDD the laser operates in the dispersion-managed mode-locking regime and the spectrum is broader. When the average GDD becomes positive, a soliton forms in a local minimum of the GDD of the DCM.

Metrics