Abstract

We investigated how the duration of short laser pulses evolves in a dispersive material, using rms widths and a propagation law based on a pulse quality factor. Experiments were carried out with femtosecond pulses (10 to 25 fs at the temporal waist) propagating in bulk fused silica. Excellent agreement was found between theory and experiment. This approach does not require complete characterization of laser pulses and eliminates the need for any assumption regarding the interpretation of autocorrelation traces. The method is of general validity, and it can be applied to pulses of arbitrary shape.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
    [CrossRef]
  2. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  3. J. Y. Zhou, C. J. Zhu, and J. Kuhl, Appl. Phys. B 73, 119 (2001).
    [CrossRef]
  4. E. Sorokin, G. Tempea, and T. Brabec, J. Opt. Soc. Am. B 17, 146 (2000).
    [CrossRef]
  5. G. Rousseau, N. McCarthy, and M. Piché, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 435.
  6. M. Piché, G. Rousseau, L. Desbiens, and N. McCarthy, in Laser Beams and Optics Characterization (LBOC5), H. Laabs and H. Weber, eds. (VDI-Technologiezentrum, Dusseldorf, Germany, 2000), p. 139.
  7. G. Rousseau, N. McCarthy, and M. Piché, Proc. SPIE 4087, 910 (2000).
    [CrossRef]
  8. A. E. Siegman, Proc. SPIE 1224, 2 (1990).
    [CrossRef]
  9. Y. Champagne and P.-A. Bélanger, Opt. Quantum Electron. 27, 813 (1995).
    [CrossRef]
  10. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).
  11. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, New York, 1986).

2001

J. Y. Zhou, C. J. Zhu, and J. Kuhl, Appl. Phys. B 73, 119 (2001).
[CrossRef]

2000

E. Sorokin, G. Tempea, and T. Brabec, J. Opt. Soc. Am. B 17, 146 (2000).
[CrossRef]

G. Rousseau, N. McCarthy, and M. Piché, Proc. SPIE 4087, 910 (2000).
[CrossRef]

1998

1995

Y. Champagne and P.-A. Bélanger, Opt. Quantum Electron. 27, 813 (1995).
[CrossRef]

1993

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

1990

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).

Bélanger, P.-A.

Y. Champagne and P.-A. Bélanger, Opt. Quantum Electron. 27, 813 (1995).
[CrossRef]

Brabec, T.

Bracewell, R. N.

R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, New York, 1986).

Champagne, Y.

Y. Champagne and P.-A. Bélanger, Opt. Quantum Electron. 27, 813 (1995).
[CrossRef]

Chirkin, A. S.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).

Desbiens, L.

M. Piché, G. Rousseau, L. Desbiens, and N. McCarthy, in Laser Beams and Optics Characterization (LBOC5), H. Laabs and H. Weber, eds. (VDI-Technologiezentrum, Dusseldorf, Germany, 2000), p. 139.

Iaconis, C.

Kane, D. J.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Kuhl, J.

J. Y. Zhou, C. J. Zhu, and J. Kuhl, Appl. Phys. B 73, 119 (2001).
[CrossRef]

McCarthy, N.

G. Rousseau, N. McCarthy, and M. Piché, Proc. SPIE 4087, 910 (2000).
[CrossRef]

M. Piché, G. Rousseau, L. Desbiens, and N. McCarthy, in Laser Beams and Optics Characterization (LBOC5), H. Laabs and H. Weber, eds. (VDI-Technologiezentrum, Dusseldorf, Germany, 2000), p. 139.

G. Rousseau, N. McCarthy, and M. Piché, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 435.

Piché, M.

G. Rousseau, N. McCarthy, and M. Piché, Proc. SPIE 4087, 910 (2000).
[CrossRef]

G. Rousseau, N. McCarthy, and M. Piché, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 435.

M. Piché, G. Rousseau, L. Desbiens, and N. McCarthy, in Laser Beams and Optics Characterization (LBOC5), H. Laabs and H. Weber, eds. (VDI-Technologiezentrum, Dusseldorf, Germany, 2000), p. 139.

Rousseau, G.

G. Rousseau, N. McCarthy, and M. Piché, Proc. SPIE 4087, 910 (2000).
[CrossRef]

G. Rousseau, N. McCarthy, and M. Piché, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 435.

M. Piché, G. Rousseau, L. Desbiens, and N. McCarthy, in Laser Beams and Optics Characterization (LBOC5), H. Laabs and H. Weber, eds. (VDI-Technologiezentrum, Dusseldorf, Germany, 2000), p. 139.

Siegman, A. E.

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

Sorokin, E.

Tempea, G.

Trebino, R.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Vysloukh, V. A.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).

Walmsley, I. A.

Zhou, J. Y.

J. Y. Zhou, C. J. Zhu, and J. Kuhl, Appl. Phys. B 73, 119 (2001).
[CrossRef]

Zhu, C. J.

J. Y. Zhou, C. J. Zhu, and J. Kuhl, Appl. Phys. B 73, 119 (2001).
[CrossRef]

Appl. Phys. B

J. Y. Zhou, C. J. Zhu, and J. Kuhl, Appl. Phys. B 73, 119 (2001).
[CrossRef]

IEEE J. Quantum Electron.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Opt. Quantum Electron.

Y. Champagne and P.-A. Bélanger, Opt. Quantum Electron. 27, 813 (1995).
[CrossRef]

Proc. SPIE

G. Rousseau, N. McCarthy, and M. Piché, Proc. SPIE 4087, 910 (2000).
[CrossRef]

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

Other

G. Rousseau, N. McCarthy, and M. Piché, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 435.

M. Piché, G. Rousseau, L. Desbiens, and N. McCarthy, in Laser Beams and Optics Characterization (LBOC5), H. Laabs and H. Weber, eds. (VDI-Technologiezentrum, Dusseldorf, Germany, 2000), p. 139.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).

R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Normalized intensity distribution Iu. The rejected (hatched) areas are uniquely determined by the value of the fractional power, Fp.

Fig. 2
Fig. 2

Scheme to determine the median value of a rms width, σu,med. The curve corresponds to the bottom autocorrelation trace of Fig. 4, below; in this case, σu,med=42.6 fs and Fp0.981. Points a and b and dashed lines explained in text.

Fig. 3
Fig. 3

Power spectra of the femtosecond pulses used in the experiment. The P2 parameter is indicated in each case. The bandwidths (FWHM) are a, 46 nm; b, 67 nm; c, 87 nm; d, 106 nm; and e, 131 nm.

Fig. 4
Fig. 4

Interferometric autocorrelation traces used to determine rms durations. The traces are related to spectrum c of Fig. 3 and to the corresponding points in Fig. 5. The relative position from the temporal waist is indicated in each case in terms of LD=2.16 mm.

Fig. 5
Fig. 5

Comparison of the propagation law with the measured rms durations for pulses corresponding to spectra shown in Fig. 3. The solid curves represent the propagation law, and the points are obtained from measured autocorrelation traces. The generalized dispersion length, LD, is indicated in each case.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P2=4πσνσt,min,
un=-+unIudu/-+Iudu,
σtz/σt,min=1+z/LD21/2.
LD1P22σt,min2β2=1β2σt,min2πσν,
Iact=-+It+τIτdτ.
σt,ac2=2σt2.
P2=4πσνσt,min=22πσνσt,acmin,
-uminFpIudu=1-Fp2=umaxFp+Iudu.

Metrics