Abstract

Simultaneous generation of second-harmonic light with orthogonal polarizations in the blue spectral region is demonstrated by use of type II and type I quasi-phase matching for the nonlinear coefficients d33, d24, and d32 in periodically poled KTP. The second-harmonic power ratio in both polarization states can be tuned by the fundamental polarization and (or) the periodically poled KTP temperature. Femtosecond pulse frequency-doubling efficiencies of as much as 39.5% W-1 and 8.1% W-1 are demonstrated in 7-mm periodically poled KTP for type I and type II processes, respectively. The efficiency limitations caused by various effects of the group-velocity mismatch are discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pierrou and F. Laurell, in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThO4.
  2. Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, Appl. Phys. Lett. 73, 873 (1998).
    [CrossRef]
  3. S. Wang, V. Pasiskevicius, J. Hellström, F. Laurell, and H. Karlsson, Opt. Lett. 24, 978 (1999).
    [CrossRef]
  4. J. Hellström, G. Karlsson, V. Pasiskevicius, and F. Laurell, Opt. Lett. 26, 352 (2001).
    [CrossRef]
  5. Casix, Inc., “Nonlinear crystal guide” (Casix, Fuzhou, China, 1999), p. 24.
  6. H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474 (1997).
    [CrossRef]
  7. W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, Opt. Lett. 18, 1208 (1993).
    [CrossRef] [PubMed]
  8. E. Sidick, A. Knoesen, and A. Dienes, J. Opt. Soc. Am. B 12, 1704 (1995).
    [CrossRef]

2001

1999

1998

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, Appl. Phys. Lett. 73, 873 (1998).
[CrossRef]

1997

H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474 (1997).
[CrossRef]

1995

1993

Dienes, A.

Ding, Y. J.

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, Appl. Phys. Lett. 73, 873 (1998).
[CrossRef]

Fukui, T.

Hellström, J.

Karlsson, G.

Karlsson, H.

Khurgin, J. B.

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, Appl. Phys. Lett. 73, 873 (1998).
[CrossRef]

Knoesen, A.

Kubota, S.

Laurell, F.

J. Hellström, G. Karlsson, V. Pasiskevicius, and F. Laurell, Opt. Lett. 26, 352 (2001).
[CrossRef]

S. Wang, V. Pasiskevicius, J. Hellström, F. Laurell, and H. Karlsson, Opt. Lett. 24, 978 (1999).
[CrossRef]

H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474 (1997).
[CrossRef]

M. Pierrou and F. Laurell, in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThO4.

Masuda, H.

Pasiskevicius, V.

Petrov, V.

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, Appl. Phys. Lett. 73, 873 (1998).
[CrossRef]

Pierrou, M.

M. Pierrou and F. Laurell, in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThO4.

Risk, W. P.

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, Appl. Phys. Lett. 73, 873 (1998).
[CrossRef]

Sidick, E.

Wang, S.

Wang, Y.

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, Appl. Phys. Lett. 73, 873 (1998).
[CrossRef]

Wiechmann, W.

Zheng, Y.

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, Appl. Phys. Lett. 73, 873 (1998).
[CrossRef]

1998 OSA Technical Digest Series

M. Pierrou and F. Laurell, in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThO4.

Appl. Phys. Lett.

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, Appl. Phys. Lett. 73, 873 (1998).
[CrossRef]

H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Other

Casix, Inc., “Nonlinear crystal guide” (Casix, Fuzhou, China, 1999), p. 24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

QPM period as a function of fundamental wavelength for SHG with nonlinear coefficients d24,d33, and d32 in PPKTP.

Fig. 2
Fig. 2

Measured (symbols) and calculated (lines) temperature dependencies of the SH wavelength for several nonlinear processes in PPKTP with Λ=28 µm (open symbols) and Λ=9.01 µm (filled symbols).

Fig. 3
Fig. 3

Measured (solid curves) and calculated (dashed curves) SH spectra for fifth-order type I and first-order type II QPM in 7-mm-long PPKTP for 70-fs fundamental pulses.

Fig. 4
Fig. 4

(a) Dependence of z-polarized (filled squares), y-polarized (open circles), and total (dotted curve) SH power at 462 nm on the fundamental polarization angle fits: sin22α (solid curve) and sin4α (dotted curve) (PPKTP with Λ=28 µm). (b) Measured temperature dependencies of the powers for y-polarized (open circles) and z-polarized (filled squares) SH in PPKTP with Λ=9.01 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A2zx=i2λ1n2zd33m33A1zA1z expiΔk33x+d32m32A1yA1y expiΔk32x, A2yx=i4λ1n2yd24m24A1yA1z expiΔk24x,
A2zx=i2λ1n2zA12d33m33sin2 α+d32m32cos2 α, A2yx=i2λ1n2yA12d24m24sin 2α.

Metrics